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Motto: 
Of all fields of scientific endeavor the one that is most bewitched by its own language is classical 
statistics. 
 
 
 
 
 
 
 

PART 1 
Classical Statistics 

 
 
 

Classical (frequentist, orthodox) statistics is (among other faults) 
 
 

irrelevant & incoherent  & incorrect  

 

 

 

 

The reasons that such a faulty vehicle enjoys almost universal acceptance are 
 
 

historical,  psychological,   sociological,  political. 
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IRRELEVANCE 
 

 

Consider the simplest of all possible problems of inference: 
 

 
Given a finite population of known size a certain unknown number of which has a 
certain attribute, say, A. What can we say about this unknown number if we have 
observed a given segment (the sample) of the population?  
 
 

Now this is a straightforward problem of inference, i.e. a question of 
 

"how to reason consistently and honestly from incomplete information so that we take fully into 
account what is known, but avoid assuming what is not known" [6] 

 
It can be solved by applying simple inferential logic and the result is a probability distribution of the 

unknown given all that is known. 

 

 

As shocking as it may sound, classical statistics is helpless in the face of even this simplest of all 

imaginable problems. As a way of dealing with it, it offers a solution to a completely different and 

utterly irrelevant problem (without, of course, coming clean what it is doing ) that sounds like this: 

 
If we consider all possible samples of the same size, what quantity would on 
average be closest (in some specified sense) to the unknown number (the 
estimate)? and how far is it expected, again on average, to wander away from it 
(the variance)? 
 
  

The altered problem is not a problem of inference. It calls for a speculation on the behavior of certain 

averages in which what is known (the sample plus a minimum of background information) plays only a 

minor part. Unknown and unobserved data, all that could have happened but didn't, are actually given 

equal weight to that of the observed, i.e. actual evidence carries very little weight. 

 
 Non-discrimination between what is known and what is not is perhaps politically very correct, but is it 

good inference? Is it inference at all?  

 
But that is not all. 



3 

The surreptitious alteration of the original problem is accompanied by arias about the sample being 

selected "randomly". A never defined, and in fact meaningless word designed to bamboozle the natives. 

And it does. Just as it fools the statisticians themselves. 

 
By a similar bait and switch scam, 

 
classical statistics turns every problem of inference into an irrelevant problem of averages over all 
possible outcomes in which all that could have happened but didn't play just as important role as 

what actually happened, and in which a good part of prior knowledge is simply ignored. 
 

In other words, what is unobserved (and therefore can't be part of the evidence) is just as essential as the 

what is observed, i.e. the evidence. 

 

And that is still not all. 
 
The error then is always compounded by another error:  

 

Conveniently ignoring the fact that in the altered problem probabilities belong exclusively to the 

collective of all possible samples, the solution to the altered problem is applied to a single observation 

hoping that the two wrongs - altering the problem and transferring  probability inexplicably from the 

collective to a single occurrence - somehow make one right. 

 

In fact, the nowhere stated but absolutely essential 
 

fundamental dogma of classical statistics (FDCS)  
 

is that 
 

the composite effect of the two errors is nil, and the result is inferentially correct. 
 

In what sense it might be correct is a mystery since inference is never defined. When objected to, what 

on gets is an aria: It works. Again, in what sense it does (if indeed it does) is never explained. In fact 

FDCS is profoundly wrong. 
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Example 1 
 
Suppose you have to measure the weight µ of a chemical compound. You have two measuring 

instrument of widely different precisions: σ0=1, and σ1=10 (units). It is your habit to flip a coin to decide 

which one to use before you make the measurement (this is called "randomization" in the parlance of 

orthodoxy). After you observe the result of the coin toss y (which can be either 0 or 1), you make the 

measurement. Based on that measurement x you need to infer the value µ. 

 
This is a straightforward problem of inference:  

Based on what is known - the data D=(x,y), and the background information I - what can we say about 

µ? I.e. What is the probability P(µ|DI)?  

 
But you are trained (brainwashed) to think in different terms: frequencies. You think about µ as an 

unknown constant not entitled to a probability distribution. Only the "random" data D=(x,y) does 

because it presumably "produces" frequencies (which you think is the same as probability) in repeated 

trials (never mind that you may never repeat the trial).   

 

So instead of  P(µ|DI), you speculate about P(D| µ) (without actually calling it P(D|µ) because that 

would already confer a probabilistic status on µ). Quite a different thing, isn't it? But let's see the result 

of that speculation. 

 
Assigning Gaussian error distribution to the measurements (why?), i.e. ( , )x N µ σ∼ , we have 
 
 

(0,1)x z Nµ
σ
−

= ∼ , or 

 
 ( ) (P z x z z) ( )zµ σ µ σ− < < + = Φ − Φ − . 

 
 

If you want this "coverage probability" to be, say, .95, then ( ) ( ) .95z zΦ − Φ − = , from which 

 follows. Thus you know that 2z ≈ ( 2 2 ) .95P xµ σ µ σ− < < + = . 

 
Now please note: This quantity is meaningless as soon as the measurement x is observed! 
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But you are not even aware of that. You are used to the double somersaults of frequentist thinking. It has 

become your second nature.  

So in blissful ignorance you proceed to perform the second somersault: 

 

Reorder the simple inequality thus: ( 2 2 ) .9P x x 5σ µ σ− < < + = , get fooled by it, and compute it 

for the observed x where it does not make sense anymore.  (E.g. for x=1.2, you'll happily declare that the 

probability is about .95 that….well, here you'll have to do a bit of fudging… is1.2 2σ± .) Despite the 

double whammy, you declare (according to the FDCS) that the result "makes sense" (as you have been 

told  anyway), so you accept it.  

 

But wait, there are other flies in the ointment. What happened to the coin? The result of the coin toss is, 

after all, part of the data. Indeed, 

 
for y=0, when you use the more precise instrument, a 95% confidence interval for µ is about x ± 2 ;  

for y=1, when the measurement is much less precise, a 95% confidence interval for µ is about x ± 20.  

 
So if, say, y=0, i.e. you take the more precise interval x ± 2, its coverage probability is nowhere near .95 

because you could have had y=1 with actually equal probability (why? - a simple question orthodoxy 

can't answer). You didn't, but you could have. Indeed, computing the conditional probabilities 

 

( 2 2 | 0) .9P x y 5µ µ− < < + = =  , but ( 2 2 | 1)P x yµ µ− < < + = = .16 . 
 

Thus combining the two  
 

1( 2 2) .95 ( 0) .16 ( 1) (.95 .16) .55
2

P x P y P yµ µ− < < + = = + = = + =  

 
And conversely, if y=1, i.e. your measurement less precise, and you take x 20 as your interval, its 

coverage probability is higher than .95 because you could have had y=0 with equal probability. You 

didn't, but you could have. Indeed, 

±

 
( 20 20 | 1) .9P x y 5µ µ− < < + = = , but ( 20 20 | 0)P x y 1µ µ− < < + = ≈ . 

Thus 
1( 20 20) .95 ( 1) 1 ( 0) (.95 1) .975
2

P x P y P yµ µ− < < + = = + = = + =  
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Let there be no mistake about it: These results are correct coverage probabilities - only they are doubly  

irrelevant because 

 
 

a) why would anyone knowingly (that is the crux, isn't it) care about coverage probabilities? 
 

b) why would anyone vitiate a precise result because one could have had the less precise one; 

and overvalue a less precise result because one could have had the more precise one. 
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INCOHERENCE 
 
 

 
Example 2 
 

Suppose you have series of urns of  identical content: the same fixed number of red and white balls. To 

make inference about the unknown ratioθ of the red balls in the urns, you conduct two experiments.  

 
In Experiment 1 you take a single ball out of each of a fixed number, say 12, of the urns. 

In Experiment 2 you keep on picking a single ball from each urn until you have three red ones.  
 
 
Now suppose that   

Exp. 1 resulted in 3 red balls out of the pre-fixed 12 (data D1);  

Exp. 2 brought the desired 3 red balls at the 12th selection (data D2). 

 
Simple questions orthodoxy can't answer or answers incorrectly. 
 
 
 
 
Q1.  Are the trials independent? 
 
 The routine orthodox answer to this is yes. All computation is based on that assumption, though a short 

reflection would demonstrate the opposite. 

 
 
 
Q2. In the long run (whatever that means), would the frequency of red balls be the same as the 
probability of drawing a red ball from a single urn? 
 
The routine orthodox answer to this is yes, though there is no way probability theory alone could 

possibly answer this question. This goes to the very heart of what probability really is. 
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Q3. Would or should the inference be different in the two experiments above? 
 
The routine orthodox answer to this is yes, because the collectives (the sample spaces of all that could 

have been observed) are widely different. Indeed, in Exp.1 the sample space is finite with 212 elements, 

but it is infinite in Exp.2. 

To do, for example, an orthodox hypothesis test to test the pair of hypotheses  

H0: θ =1/2  as opposed to, say,  

Ha: θ <1/2,  

 

the p-value of the test in  

Exp.1 would be , while in  1 .073p ≈

Exp.2, it would be . 2 .033p ≈

 

The difference is due to the sample spaces (the set of all that could have been observed) being widely 

different.  

If one believes the frequentist claim that the p-value of a test is a kind of weight of evidence against the 

null-hypothesis, than the evidence against H0 in Exp.2 is more than twice as strong as in Exp.1.  

 

Very spooky if you think about it:  

 

In both experiments we observed 3 red balls out of 12. Only what could have been observed are 

different, i.e. the intention, in Exp.2, of the experimenter to go on indefinitely if necessary greatly 

influences the inference.  
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Q4. Does such a procedure make any sense? is the p-value relevant? 
 
To assess the plausibility of a hypothesis H , a normal person would ask this: What is the plausibility of 

H in light of the evidence, i.e. What is P(H|DI) ? 

  

But that would mean defining and assigning probabilities on a hypothesis space, a definite no-no for 

frequentists. 

 

Remember: H is either true or false, and unknown constant. Only the data is "random". And in the 

frequentist mind set this nebulous, never defined, and in fact meaningless buzz-word "random" is the 

only permitted "source" of probability (which in turn is thought of as identical with frequency). That the 

reason to use inference and assign probabilities is that one's knowledge is incomplete does not enter the 

orthodox mind. 

 

So, the frequentist is stuck with P(D|H) - and by not calling it as such he is compelled to ignore I. Not 

quite the same thing.  

 

In fact it is a logical error, and simply false to say that P(H|DI)=P(D|HI); much less it is true that 

P(H|DI)=P(D|H). One can be quite different from the other. 

 

And yet, using the well tried bait and switch scam, classical statistics sells the p-value as if it were 

something like P(H|DI). 

 

 Thus, goes the advise, if the p-value, the probability of the data (and a host of other values that did' not 

occur!! - the p-value is a strange beast) upon the hypothesis, is small, then the hypothesis can be 

rejected. 

 

Let's see how this stands up in practice. 
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INCORRECTNESS 
 
Example 3 
 
Suppose a heinous crime is committed in a town of a million people. The police, under tremendous 

pressure to produce results, arrests the first passer by at one of precincts. This person is subjected to a 

very accurate test that, according to its specifications, produces false results (negative or positive) about 

one in a million. The result of the test turns out to be positive. 

 

The prosecution, trained in classical statistics, argues thus.  

Since, given innocence, the probability of obtaining positive test result is extremely small, it follows that 

the accused is overwhelmingly more likely to be guilty than not.  

 

This sounds soo reasonable and sooo scientific to the court and the jury (and since no one around is 

trained in the logic of inference)  that they find the accused guilty and hang him by the neck until dead.  

 

In more precise terms the argument runs like this.  

If G and G  denote, resp., the guilt and innocence of the accused, and the datum is D={the test is 

positive}, then we know that the p-value of the test of the hypothesis of innocence P(D|G ) ≈ 10-6 . 

 

⇒   P(G |D) ≈ 10-6     P(G|D) = 1- P(⇒ G |D) ≈1  

 QED 

 

Except that the first implication, an incorrect logical non sequitur of course, went unstated (as in all 

classical statistical hypothesis test) and thus remained unnoticed. 
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The correct argument should have gone like this. What we want is not P(D|G ), but P(G |DI). Using 

Bayes' formula we have 

 

 

6

6 6

( | ) ( | ) 1( | ) ( | ) ( | )( | ) ( | ) ( | ) ( | ) 1
( | ) ( | )

1 1 1
( | ) 10 21 1

10 ( | ) 10

P D GI p G IP G DI P D GI p G IP D GI p G I P D GI p G I
P D GI p G I

p G I
p G I

−

− −

= =
+ +

= ≈ =
+ +  

 
 
So because of willful ignorance and faulty logic, a person with no more than a toss-up chance to be 

guilty or innocent was hanged. 

 
Note that there is no way to decide the probability of a hypothesis H upon data D without knowing what 

that probability was prior to the data. The prior information, ignored by frequentist procedures, turns out 

to be vital. 

 
 
Remark 
 
The p-value also suffers from being an incoherent measure of support in the following sense. 
 
In testing two hypotheses H1 and H2 such that H1 implies H2 , one would expect that the rejection of H2 

would entail the rejection of H1. And conversely, support for H1 would entail support for H2 .  

 

The p-value violates this natural and fundamental requirement of coherence. 
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PART 2 
INFERENCE 

 
 
In classical statistics you'll never find a definition of inference. It operates with a hodge-podge of ad hoc, 

sometimes contradictory, and frequently violated methods, principles, etc. The tacit assumption is, of 

course, that the FDCS acrobatics will always land it in an inferential heaven. As the examples indicate, 

either this heaven is not much to be wished for, or classical statistics has lead us astray and we ended up 

in an inferential purgatory instead. To see which, we have to define what we mean by inference, and 

what we wish it to accomplish. 

 

We wish to assign plausibilities to propositions (on the Boolean algebra of propositions) given a certain 

state of information.. The plausibility of proposition A given that some other proposition B is true is 

indicated by (A|B). 

 
Desiderata [6]: 
 

1) Degrees of Plausibility are represented by real numbers 

 

2) 

a) If a conclusion can be reasoned out in more than one way, then every possible way must 
lead to the same result. 

 
b) All relevant evidence is taken into account, i.e. evidence is not taken into account or 

ignored arbitrarily. 
 

 
c) Equivalent states of knowledge are represented by equivalent plausibility assignments. 

 

3)  Qualitative correspondence to common sense.  

  This is a very reasonable technical monotonicity requirement which says that if (A|C) changes 

so that (A|C')>(A|C) when C is updated to C', but (B|AC')=(B|AC), then ( A |C')<( A |C)  and 

(AB|C') (AB|C) . ≥

 

1), 2a), and 3) are structural requirements; 2b) and 2c) are interface conditions for relating to the outer 

world. 
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Cox's Theorem (J.of Phys., 1946; The algebra of probable inference, 1962) 
 
A measure of plausibility that satisfy the desiderata above must be a monotonic function of a 
function  that satisfies the following rules (the product and the sum rule, respectively). ( )P i
 

) ( | ) ( | ) ( | ) ( | ) ( | )

) ( | ) ( | ) 1

i P AB C P A BC P B C P B AC P A C

ii P A C P A C

= =

+ =  

 
We shall use function  P(.) itself to measure plausibility and call  it  
 

PROBABILITY 
 
That is it. These are the rules of inference.  

 

To do inference consistently, one must follow these two simple rules. No further principles, criteria, etc.  

are needed.  Just as deductive logic ensures that truth and falsity flow unimpeded through a series of 

deductions, the rules of inference mutatis mutandis ensure that the probabilities arrived at the end of an 

inferential process are the ones, and the only ones consistent with the initial probabilities.  

 
Suppose H is an hypothesis, D is some data, and I is the background information. Then from the sum 

rule we have 

( | ) ( | ) ( | ) ( | ) ( | )P HD I P H DI P D I P D HI P H I= =  
 

from the second equation it follows that 
 

 

( | ) ( | )( | )
( | )

P D HI P H IP H DI
P D I

=
 

 
 

Bayes rule.  
 

 Bingo! 
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Classical statistics does not follow these rules. Or any rules, for that matter. It has no conception of 

inference and operates with a host of ad hoc "methods" and "principles" some of which are mutually 

contradictory, and most of which are violated.  

 

Therefore, its results are without any logical status and, thus, strictly speaking meaningless. But in fact, 

after the usual double somersault of FDCS, they can be given a formal status which is either 

a) wrong, or 

b)  identical with the results derived by proper inferential logic. 

 

To say that classical statistics (with the help of FDCS, of course) is just another way of doing inference 

is like saying that there are many ways of arriving at truth in a series of deductions (such as 

mathematics): logic, and some other ways. The alternative must justify itself every time by showing that 

its result agrees with the logical one. If so, it is not needed; if not, it is wrong. Thus 

 

Classical statistics is either superfluous or wrong. 
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Probability is an extension of deductive logic (and in fact the only extension consistent with our 
desiderata). 
 
The two fundamental (strong) syllogisms of deductive logic are: 
 
 

I.  

A B
A true

B true

⇒

   II.   

A B
B false

A false

⇒

 

 
Let . Then the two strong syllogisms correspond to the product rule in the form { }C A B≡ ⇒
 

( | ) ( | )( | ) , ( | )
( | ) ( | )

P AB C P AB CP B AC and P A BC
P A C P B C

= =  

 
 

From I. we have P(AB|C)=P(A|C), and from II. we have ( | )P AB C 0= .  
Therefore P(B|AC)=1 and ( | ) 0P A BC = . 

 
However, the two rules of inference also contain more: weak "syllogisms" widely used in inductive 
reasoning, but whose existence were dismissed by Carl Popper and his followers. 
 

i.

A B
B true

A is more plausible

⇒

    and   ii.

A B
A false

B is less plausible

⇒

 

 
Let's see i. 
 
From the product rule we have 

( | )( | ) ( | )
( | )

P B ACP A BC P A C
P B C

=  

 
But from I. we know that P(B|AC)=1; and since P(B|C) ≤ 1, it follows that 
 

( | ) ( |P A BC P A C≥ )  
i.e. A becomes more plausible. 
 
Even weaker "syllogisms" can be derived from the rules of inference.
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Probability is therefore not 
 
physical science, not the study of frequencies as classical statistics would make you believe (though how 

it could possibly be even thought to do that based on such simple, purely logical axioms as the 

Kolmogorov axioms that forms the basis of mathematical probability theory is a mystery). 

 
Probability is 

 
an extension of deductive logic for cases when deductive inference is impossible due to incomplete 

knowledge, i.e. it is the logic of science (and quite possibly all reasoning). 

 

When the background information consists of frequencies (as in our opening problem), extended logic 

(Bayesian analysis) automatically takes them into account, and by a built in updating feature allows the 

prediction of future expected frequencies from past ones. Classical inference has no procedures to do 

such elementary inductive reasoning. Strictly speaking, classical statistics can't even get off the ground.  

 

Qualitative weak syllogisms and the quantitative connection it establishes between past and future make 

extended logic the logic of induction.  

 

Hume's skeptical argument against induction and Popper's ideas of scientific reasoning were brilliantly 

refuted by the late D.C.Stove (see The rationality of induction; Popper and after). After finding the flaw 

in Hume's argument and unmasking Popper's objections he puts forward compelling arguments for, and 

identifies probability as the proper vehicle of induction. However, not being aware of Cox's theorem and 

extended logic, he makes a futile attempt to forge some frequentist ideas into some sort of logic. This 

unfortunately vitiates the second half of his book on induction which still awaits to be put aright. 

 

A comprehensive treatise on the historical, psychological, sociological and political reasons such 

deeply, indeed fatally flawed paradigm as classical statistics has come to be enjoying almost universal 

acceptance also awaits to be written. 
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Miscellana 
 
 
Confidence sets or intervals are concerned with coverage frequencies, i.e. confidence sets are 

constructed to provide a given frequency of coverage of an unknown constant, say, θ in repeated 

sampling. Only the false FDCS lends inferential value to such sets in the orthodox mind. Consider, 

however, the following  

 

Example 4 [1] 

 

Suppose it is known that a certain unknown parameter θ of an experiment is between 0 and 1. In order to 

gain some insight as to the value of θ one collects an observation X from a uniform distribution on the 

0,1 interval in manner that is totally unconnected to the experiment and θ (e.g. produced by a favorite 

toy of statisticians: a "randomizer"). Now you would think that such an "observation", coming from a 

source so utterly unrelated to anything relevant to the experiment at hand, could produce no insight 

whatsoever as to the value of θ. (If you do think that, then you are not yet hopelessly infected by 

orthodoxy.) However, if coverage frequency you are after, X could easily give you that as follows. 

 

Let B be any subset of the parameter space (known to be the (0,1) interval), and define 

 

0 .0
(0,1) .05 .95

.95 1
X

B if X
I if X

B if X

 < ≤


= <
 ≤ <

5
<  

The coverage probability of IX is 

 

( covers )
( covers | 0 .05) (0 .05)
( covers | .05 .95) (.05 .95)
( covers | .95 1) (.95 1)

.05 1 .9 (1 ) .05
.05[ (1 )] .9 .95

X

X

X

X

P I
P I X P X
P I X P X
P I X P X

p p
p p

θ
θ
θ
θ

=
< ≤ < ≤

+ < < <
+ < ≤ <

= × + × + − ×
= + − + =

<
≤

 

IX is indeed a 95% confidence set that does the coverage trick required from such sets. And yet it 

is totally useless as a tool of inference. 
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The example above not only sheds light on the nature of confidence intervals and the difference between 

coverage probability and inferential value, it also raises several important questions: What is the role and 

what is the inferential value (if any) of  randomization? And: What sort  of  property is "randomness", 

and whose property is it, if indeed it is something real? 

 

Lets revisit the standard finite survey example we had began this (series) of talk(s) with: 

 

Given a finite population of known size N a certain unknown number of which has 
a certain attribute, say, A. What can we say about this unknown number if we have 
observed a given segment (the sample) of the population?  
 
 

For the orthodox mind the problem is ill-defined until the manner in which the sample was taken is 

specified (and when it is specified, it would proceed by solving an altered and irrelevant problem of 

averages).  So let's imagine how a Socratic dialogue might develop between an orthodoxian (O) and a 

Bayesian (B). 

 

B: Given the information above, the problem can be solved. In fact, what is required here is the 

solution of THIS problem, with the state of information given above, not some other problem where 

more or different information is given. 

O: What state of information has got to do with it? 

B: Well, let's see. Suppose you know that all population units are identical. In this case the link 

between sample and population is so strong that a single observation, however selected, would reveal 

the whole population. In our problem the state of information is different, and, as a result, the link 

between sample and population is much weaker. However, the link is still strong enough to produce an 

elegant and meaningful Bayesian solution using a Hypergeometric sampling distribution for the number 

of units with attribute A in the sample, and a uniform prior (on the integers between 0 and N) for the 

number of units with attribute A in the population (as dictated by the state of information given). 

O: Aha! Now you are trying to pull a fast one. For the Hypergeometric distribution to be valid, the 

sample has to be random, i.e. it needs to be picked in a random fashion? 

B: Though I would be curious to know if by valid you mean correspondence to some physical state, 

or valid description of a certain state of knowledge,  I'd rather you elaborate on what you mean by 

"random fashion". 
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O: Textbook stuff. Such a way that all possible samples have the same probability to be selected. 

(And there are  different samples.) 
N
n



 




B: Hm. I seem to recall that your kind of texts call random every sample entitled to a probability 

distribution? Not just the ones obtained be "random fashion". But never mind. Let me ask you this. How 

would you accomplish what you just said, i.e. how would you ensure that in your selection of a single 

sample, all samples, even the ones not selected have the same probability to be the lucky one? 

O: There are many ways. An obvious and widely used one is to give the pot holding the names or 

serial numbers of the units a good shake or stir. 

B: And how much stir would you deem enough? Or rather, how much stir would be deemed enough 

by the statistical theory you subscribe to? 

O: (thinking hard) Wee…ell, this does not really seem to be part of statistical theory….but I would 

say when one is reasonably sure that it is beyond human capacity to utilize any structure that might have 

existed in the pot and linked them together. 

B: Hm. Might have existed and linked them together physically?, or might have existed and linked 

them together logically? For an interesting configuration might exist in the pot (physically, that is) you 

know nothing about. Does that matter? And alternatively, if you are in possession of such knowledge, 

wouldn't you be better off (i.e. come up with a more precise inference) by making use of that 

information rather than messing it up? 

O: (hesitating) Weeeell….actually….now that you point this out…. 

B: And in the absence of such knowledge, what would be accomplished by the whole stirring and 

shaking hocus-pocus? In what way would it change your state of knowledge? 

O: (hesitating) …Well, it wouldn't… 

B: Moreover, though you may be successful in messing up some structure that might exist in the 

pot, would you not just create another structure by the whole process? A Turkish text is gibberish, i.e. 

"random" configuration of letters to me, but not for a Turk. Every pot has some "structure". 

O: Yes, of course. Only I, or anyone else, would not know about it. 

B: Bingo! Then you agree: What matters is not what goes on in the pot, but what you know, or 

suspected to know about it. The sampling distribution then is not the result or product of some physical 

stirring and shaking process nearly impossible to describe, but merely the description of a certain 

knowledge: equal share to all possible results in the absence of such knowledge (as in our case), or some 

other distribution in the presence of some knowledge. Now you may find that your knowledge, though 
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far from ignorance, is so difficult to model that you rather opt for destroying it. Or others may suspect 

that you have some knowledge which you may abuse and demand that you destroy it. But that's about it. 

O: (pondering)  I'm not sure… 

B: Now suppose the sample has already been selected. And though you are told it was done in a 

random fashion (whatever that means), you are suspicious. Could you, just by inspecting the sample, 

decide if that particular sample is indeed random? Could you reject it and say: No, this is not random for 

this and this reason. 

O: (surprised by the question)  I don't think so. Every sample had a chance, the same chance, to be the 

one. There are no telling signs. 

B: Then the expression "random sample" is doubly meaningless since that mysterious property of 

"randomness" belongs to the process at best, not the sample. And we are uncertain, as we have just 

concluded, as to what that process would accomplish - statistically, that is. Physically of course it does 

something awfully complicated and difficult to describe.  

O:  Yeeees…so it seems… 

B: And yet you ortodoxians use "randomness" as some magic property of a single sample. As if 

some properties (and pretty vague, mostly hoped for properties at that) of the process would, by some 

magic glue, stick to the selected individual transferring to it those properties that belonged to the 

collective before (and we don't really know what those properties are). As a result of that magic, 

"random" samples are suddenly entitled to own probabilities which they were not entitled before.  

O:  Well, if the pot is not stirred or shaken, I could be accused of cooking the sample. 

B: That is a valid point as I myself have pointed out when I said that you may be suspected to have 

some knowledge which you may abuse, so you may be asked to destroy it. But what has this got to do 

with probability in general, and the Hypergeometric distribution in particular? 

O: (with a sudden sneering smile) Let's bring in frequencies. 

B: This seems to be one of those strange obsessions of yours. But, alright, let's bring them in. 

O: In repeated trials an unstirred, or not sufficiently stirred, pot may not produce the long run 

frequencies we expect. 

B: And what might those frequencies be? 

O: The probabilities, of course. 

B: So you agree: Probabilities and frequencies are different beasts. I am glad we cleared this up. But 

let's stay with frequencies. Would a sufficiently(?) stirred pot produce them as you would expect? 

O: (the sneer fading) So I am told… 
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B: Is this an empirical observation? - because we are talking about a complex physical procedure 

the result of which depends on host of physical parameters such as the style, amount, etc. of stirring, and 

its frequency producing capacity (if any) would need to be reestablished on each occasion. To my 

knowledge this is no only not done routinely, but it has never been done. Or has someone actually taken 

the trouble and solved a nearly intractable dynamical problem, or rather a huge family of problems of 

stirring and shaking various pots in various ways (and what a waste of time would that be)? - in which 

case I would need the appropriate references. At any rate, we are already outside of the realm of 

statistics and in the realm physics. 

O: (discouraged) Well… 

B: But more to the point: Do those frequencies really matter? After all, most statistical experiments 

in general, and surveys in particular are unique events. At any rate, frequencies were not, and very 

seldom are part of the question. 

O: (in a sudden outburst)  No matter what you say, I still believe that a stirred pot has better chance to 

produce a representative sample than an unstirred one. 

B: Though we have not even settled the question of how much stirring would be sufficient, I must 

point out that this is the third time you have shifted the debate. Initially randomization was supposed to 

be THE source of the sampling distribution; then it was supposed to safeguard your (or the survey's) 

integrity; then the emphasis shifted to the production of certain frequencies; and now it is the 

representativeness of the sample. So which one is it? 

O: I'm confused… 

 

And as confused though as he is, he leaves the scene to teach (or brainwash?) a class on the wonderful 

properties of random samples. 
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So which one is it? The role of randomization (in any form) is 

 

a) to produce the (or a?) proper distribution? Nonsense. Probability (distributions) are not physical 

entities, products or byproducts of any process. Besides, that distribution is supposedly defined 

on all possible samples. In what way, by what magic glue would this collectively owned entity 

stick to a single sample selected thus? At any rate, how does one ensure and/or check that, due to 

the randomization process, the resulting sample is indeed random?, that probability is indeed 

produced?, and that what was produced have indeed been divided equally among the recipients? 

 

b)  to produce some frequencies in the long run? Nonsense. To begin with, it may or may not 

produce them - a nearly intractable question that belongs more to physics than statistics. And 

whether it does or does not produce them is utterly irrelevant due to the uniqueness of each 

survey (and our inevitable death in the not-so-long run). In any case, while probability 

assignments may change due to a change in background information, frequencies, being physical 

entities, are not influenced by such changes. They are what they are. Past frequencies, if known, 

form part of the background information and incorporated as such into the Bayesian inferential 

process. Future frequencies are simply unknown. We can merely speculate about their expected 

values which, incidentally, orthodoxy can't do (it merely equates probability with frequency) but 

poses no difficulty to Bayesian inference. But again, frequencies are simply irrelevant and 

usually get into the picture only as an orthodox contraband. 

 

 

c) to ensure the representativeness of the sample? Nonsense. If anything, the opposite is the case. A 

perfect, or ideal representative sample, the one to approximate, is a miniature replica of the 

population with resp. to the objectives of the survey. The role of a sampling plan is to ensure that 

the sample is as representative (informative) as possible. That is indeed the holy grail of 

sampling surveys. Is it reasonable to believe that some randomizer, a deliberately dumb and 

blind mechanism guaranteed to be utterly unrelated to the problem at hand is a good way, let 

alone the best way to ensure that (remember Example 4)? If such were the case, why would we 

need statisticians (if indeed we do)?  In fact, to create a sample as representative as possible, i.e. 

establish a connection between sample and population, one needs to rely on prior information. 

Randomization, far from being a good vehicle to establish such a connection, is an almost perfect 
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vehicle to destroy any information and severe any connection that might exist between sample 

and population. A strange procedure indeed. 

 

d) to protect the integrity of the survey(or)? Well, this, at last, is indeed a legitimate, though much 

abused role - the only one in my opinion. For the surveyor could be accused to have injected in 

the selection of the sample information he might have possessed or thought to have possessed, 

i.e. that he cooked the sample. The easiest (though not necessarily the wisest) way to protect the 

integrity (though not necessarily the quality) of the survey is to destroy this information in a 

compelling manner, i.e. by randomization. That is why such a process is deliberately dumb and 

blind, that is why we shuffle cards, and that is why teams in a sports tournament are paired 

"randomly" (though random matching makes it reasonably certain that not the best two teams 

will play in the final). So it all comes down to this: Randomization is willful destruction of 

information. Having this clarified, the next step is the realization that  

 

"behind any randomized scheme there is a non-randomized one which is better 

but require more thought". 
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Not all samples are created equal  

 
The belief that they are lies in the heart of orthodoxy. That this belief is untenable is well illustrated by 

Example 1. Even orthodoxians have realized that in such cases the inclusion of the whole sample space 

in the calculations would be absurd. It is sometimes argued that the example is artificial and the problem 

is easily remedied by breaking up the sample space into two subsets (as indicated by the precise and the 

imprecise instruments, whichever the case might be) not to be mixed by averaging. When its procedures 

fail, such ad hocery is characteristic of orthodoxy: instead of recognizing the fundamental flaws in its 

logic, it resorts to ad hoc devices to fix, or hope to fix problems (without realizing, of course, that the 

wrong problem is being addressed to begin with). However, it is easy to come up with less "artificial" 

examples as the difficulty easily arise naturally in simple problems. 

 

Example 5  
 

Suppose the results of an experiment is known to lie in a unit length interval with an unknown center θ, 

i.e. all measurements are known to lie between θ -1/2, and θ +1/2 (and that is all we know). From two 

observations x1 and x2, we need to infer to the value of θ.  

 

Consider the two extreme configurations: 

 

1) The distance between x1 and x2 is 1. 

In such a case we would actually know that θ is just the average of the two observations. The inference 

is deductive, the resulting knowledge of θ is exact. 

2) The distance between x1 and x2 is 0.  

In such a case we would be as uncertain about value of θ is as we can be with only a single observation, 

say, x1. All we could infer is that θ lies somewhere between x1-1/2 and x1+1/2. 

 

There are an infinity of possibilities between these two extreme configurations resulting in various 

degrees of uncertainty about θ ranging from the smallest (Case 1) to the largest (Case 2). It is easy to see 

that mixing all these possibilities, so different in the quality of inference they allow, into a single 

average soup would be no less foolish and misleading than it was in Example 1.  Any inferential process 

worthy of its name ought naturally to reflect these differences in information content of various samples. 
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It would also allow inductive inference to merge seamlessly into deductive inference as one moves from 

the most uninformative Case 2 to the fully informative Case 1 - as Bayesian inference indeed does all 

these. 

 

That samples are not created equal had been known and keenly felt already by the dedicated frequentist 

Sir Ronald Fisher who, in his later years, devoted a large part of his remarkable genius to trying to fix 

this and other problems of frequentism. He can be credited with two of the most ingenious but, alas, 

failed attempts to "eat the Bayesian omelet without breaking the Bayesian egg": fiducial probability and 

ancillary statistics. The former was supposed to solve the problem of magic transference of probability 

not only from the collective to the individual but also from the sample space to the parameter space, and 

turn frequentist probabilities (the real thing in his view) into some sort of logical (possibly Bayesian?) 

ones.  

 

The latter, ancillary statistics, addressed the question of the reference set, that subset of the sample space 

within which an average soup would be palatable. Fisher apparently believed that in many (most?, 

every?) problems the sample space of all possible samples can be resolved into mutually exclusive, 

inferentially incompatible subsets within each of which, however, a sort of inferential unity prevails in 

the sense, that within each subset all samples would be equal in their information content and precision 

of inference they would allow. According to the conditionality principle (one of dozens of such ad hoc, 

sometimes contradictory, and often violated frequentist devices to keep it on track), it would be 

improper to use the whole sample space as reference set. The proper thing to do is to restrict the sample 

space to (condition on) an inferentially more homogenous subset as indicated by the so called ancillary 

statistic of the sample, a statistic whose parameter-free distribution is fully known in advance (in 

Example 5, |x1-x2| would be such a statistic; in Example 1, the result of the coin toss y would do the job). 

 

A beautiful idea - if only it had worked. But it did not. Far from being universally applicable, ancillary 

statistics exist only in a narrow family of relatively simple problems. And then they may not be unique. 

And when they do exist and unique, the distribution restricted to the proper reference set by the ancillary 

statistic agrees (formally that is) with the Bayesian result (with an uninformative prior) which can be 

obtained painlessly by the two simple inferential rules without resorting to ad hoc principles. Yet again: 

When it works, it is superfluous. 
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Independence revisited 

 
It is worth revisiting the question of independence in connection of Example 5: Are the two observations 

x1 and x2 independent? In my experience the problem is instantly metamorphosed into a question of 

irrelevant physical independence in the traditionally trained mind: If the observations were obtained in a 

physically unconnected manner, then the answer is yes, otherwise it is no. And yet, the observations 

could be separated by years and miles and still not be independent. What is wrong? 

 

Suppose the first observation x1 is about to be observed. Since, according to the specifications, nothing 

is known about θ, and since x1 must be within half unit of θ, all we know is that x1 could end up 

anywhere on the real line. Having x1 observed, what can be said about the second observation x2 ? Can 

that also be anywhere? Not by a long shot. Since x1 must be within half unit of θ, θ must be within half 

unit of x1, i.e. by jut one observation our knowledge has already increased infinite fold. We can't expect 

a similar improvement in our knowledge by the next observation. Indeed, as a little reflection would 

show, x2 must be within one unit of x1, only a minor improvement compared to the improvement on our 

total cluelessness as to the value of x1; in comparison the location of the next observation x2 can be 

found next to x1 with pinpoint accuracy. In short, the correlation between x1 and x2 is probably very 

strong. Not only x1 and x2 are not independent, but their correlation is as strong as possible as it is 

indeed 1. Were the whereabouts of θ be given more precisely, the corresponding correlation between the 

first two observations would be lower and approach 0 as exact knowledge of θ is approached. Only 

when θ is known exactly would the observations be independent. In a similar manner, as the 

observations accumulate, new observations would add only a diminishing amount to our knowledge 

already accumulated, and the correlation between every two new observations given the past would 

weaken and slowly approach 0. (These qualitative arguments can, of course, be confirmed by easy 

Bayesian calculations.) 

 

It seems that the strength of dependence between two observations is not only not a question of physical 

connections but of logical ones, but, as it hinges on what one knows, it is not even an absolute measure.  

 

How could orthodoxy have gone so wrong with such fundamentally important concept discussed at the 

beginning in every introductory text? The answer lies in orthodoxy's mistaken physical conception of 

probability and virtually everything related to it, and its consequent denying of a probabilistic status 
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from anything that is not "random". How this have come to pass is somewhat of a mystery since the 

Kolmogorov axioms, the point of departure in virtually every text on probability, are clearly logical in 

nature; and though they fail to specify the nature of probability (unlike the desiderata that imply Cox's 

theorem), they could not possibly have served as the foundation of any physical or natural science. 

 

Be as it may, following the textbook definition of independence, x1 is independent from x2 if 

p(x2|x1)=p(x2). As it was demonstrated above, this is manifestly not the case here: while p(x2)= p(x1) is a 

distribution on the whole real line, p(x2|x1) is concentrated on the interval (x1-1, x1+1).  For an 

orthodoxian, however, p(x1) is a distribution concentrated on the interval (θ -1/2, θ +1/2), and so is 

p(x2|x1). It is a declaration, usually based on the belief of physical disconnectedness of the observations, 

that x1 does not change (physically?) the distribution of x2 (to be precise, it is in fact the knowledge of x1 

that presumably does or does not change the distribution of x2). But, as it has just been demonstrated, 

this is manifestly false. It would only be true if the value of θ were known. But it isn't. What is going 

on?  

 

Well, orthodoxy considers θ an unknown constant. Nothing "random" about it. It is thought to be "out 

there" in the physical world to be measured, however imperfectly, like one measures physical variables 

such as mass or heat. This is  not only irrelevant and possibly misleading (e.g. the unknown fraction of 

balls with attribute A in the urn does have physical status and fully knowable in principle, but the 

"probability of heads" in a coin tossing experiment is merely a mathematical artifact that is not 

knowable even in principle), but it confers on θ a rather ambivalent status: on the one hand, it is clearly 

unknown (to be estimated, tested, etc.); on the other hand, we pretend as if it were fully known, 

otherwise independence, for example, could be declared. And it is all or nothing. θ is either fully known, 

or completely unknown - no grades of knowledge allowed. This ambivalence of the extremes is never 

resolved; whichever aspect is needed is used opportunistically. Is there any way to resolve the 

ambivalence? Not if the logical nature of probability is rejected and a probability distribution is denied 

from θ on the basis of irrelevant physicalistic arguments. Only if θ is allowed to take its proper place 

after the vertical line can the ambivalence be resolved. Only then can differences in background 

information I, and the degree of dependence between the observations as a function of that information 

be quantified that would confirm the heuristic arguments presented above. But then we would venture 

on forbidden Bayesian territory, wouldn't we. Well, not so forbidden, as we shall see presently. 

The stock response from orthodoxians after hearing arguments like the above is a shrug: "So what? The 

observations are conditionally independent. What we meant was that p(x2|x1,θ)= p(x2|θ). No big deal."  



28 

Such hypocritical opportunism, such readiness to take nourishment from Bayesian ideas without, of 

course, taking the consequences, is characteristic of orthodox thinking. Orthodoxy always hopes to get 

away with it - and mostly, and somewhat mysteriously, it does. It is seldom taken to task for using the 

profoundly false FDCS as its fundamental modus operandi because it has never been openly declared 

and few of its clients see through the fog of technicalities (physicists, due to their technical prowess, are 

notable exceptions - and they are instinctively Bayesians). And it is seldom taken to task for meaning 

conditional independence when saying independence because few are aware of the logical nature of the 

concept, and because the conceptual confusion is thought not to cause any trouble. But it does. 

 

For, as we have seen, what one knows matters. In the presence of even the minimal uncertainty as to the 

value of the parameter the observations are no longer independent - conditionally or unconditionally. In 

testing composite hypotheses (such as Ha in Example 2) the very composite nature of the hypothesis is 

an indication of uncertainty as to value of the parameter. Upon such hypotheses, the data are no longer 

independent, and the conditional nature of the concept can no longer be swept under the carpet. Since 

testing composite hypotheses is the daily bread and butter of statistics (even though the classical 

hypothesis test does a botch job of it), it is interesting to see how orthodoxy saves its skin in this case. 

Even a cursory browsing through chapters devoted to such tests in standard texts would reveal that, 

despite the promising heading, the delivered product is not what has been promised (isn't it always the 

case with orthodoxy?): there is not a single composite hypothesis tested in those chapters. Instead what 

one finds there is a host of ways to reduce composite hypotheses to simple ones (monotone likelihoods, 

maximized likelihood ratios, etc. are the main vehicles to do just that).  

 

Summing up  

 

Classical statistics is a hopelessly flawed inferential tool whose operation is a based on bait and switch 

scams (FDCS, etc.). It is riddled with irrelevant, incoherent, and incorrect methods and concepts patched 

up by a host of contradictory ad hoc principles and criteria violated as often as adhered to. Its creaking 

edifice is held up not by its merits but by clients unaware of the bait and switch scam; clients who don't 

care because all they want is admission to the temple of science from its high priest, the statistician; and 

by sheer intellectual inertia maintained by vested interests in the status quo and that main source of 

orthodox indoctrination, the Intro.Stats. course offered to countless thousands of unsuspecting students 

every year. 
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