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Originally a talk delivered at a conference on Bayesian
statistics , this article attempts to answer the following ques-
tion: why is most scientific data analysis cared out in a
non-Bayesian framework? The argument consists mainly of
some practical examples of data analysis , in which the Bayes-
ian approach is diffcult but Fisherianlfrequentist solutions

are relatively easy. There is a brief discussion of objectivity
in statistical analyses and of the difficulties of achieving

; objectivity within a Bayesian framework. The aricle ends
with a list of practical advantages of Fisherianlfrequentist
methods , which so far seem to have outweighed the philo-
sophical superiority of Bayesianism.
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The tite is a reasonable question to ask on at least two
counts. First of all , everyone used to be a Bayesian. Laplace
wholeheartedly endorsed Bayes s formulation of the infer-
ence problem , and most 19th-century scientists followed
suit. This included Gauss, whose statistical work is usually
presented in frequentist terms.

A second and more important point is the cogency of the
Bayesian argument. Modem statisticians , following the lead
of Savage and de Finetti , have advanced powerful theoret-
ical reasons for preferrng Bayesian inference. A byproduct

i of this work is a disturbing catalogue of inconsistencies in
the frequentist point of view.

Nevertheless, everyone is not a Bayesian. The current

era is the first century in which statistics has been widely
used for scientific reporting, and in fact, 20th-century sta-
tistics is mainly non-Bayesian. (Lindley (1975) predicts a
change for the 21st!) What has happened? 

TWO POWERFUL COMPETITORS

on,
The first and most obvious fact is the arval on the scene

of two powerful competitors: Fisherian theory and what Jack
Kiefer called the Neyman-Pearson-Wald (NPW) school of
decision theory, whose constituents are also known as the
frequMtists. Fisher s theory was invented, and to a re-
markable degree completed, by Fisher in the period between
1920 and 1935. NPW began with the famous lemma of
1933, asymptoting in the 1950s , though there have contin-
ued to be significant advances such as Stein estimation
empirical Bayes, and robustness theory.

Working together in rather uneasy allance, Fisher and
NPW dominate current theory and practice, with Fisherian
ideas paricularly prevalent in applied statistics. I am going
to tr to explain why.
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Why Isn t Everyone a Bayesian?

FISHERIAN STATISTICS

In its inferential aspects Fisherian statistics lies closer to
Bayes than to NPW in one crucial way: the assumption that
there is a correct inference in any given situation. For ex-
ample , if Xl' X2, 

. . . , 

X20 is a random sample from a Cauchy
distribution with unknown center 

(x;
7T(1 + (x; e?J'

then in the absence of prior knowledge about the correct
95% central confidence interval for , to a good approx-
imation

:! 1.96/ liJ

here is the maximum likelihood estimator (MLE) and
liJ is the second derivative of the log-likelihood function
eval ate at e= O. The (mathematically) equally good ap
proxlmatton

:! 1. 96/v'
(10 being the expected Fisher information), is not correct
(Efron and Hinkley 1978).

Fisher s theory is a theory of archetypes. For any given
problem the correct inference is divined by reduction to an
archetypal form for which the correct inference is obvious.
The first and simplest archetype is that of making inferences
about from one observation in the normal model

N(e, 1). (1)

Fisher was incredibly clever at producing such reductions:
sufficiency, ancilarity, permutation distributions , and

asymptotic optimality theory are among his inventions , all

intended to reduce complicated problems to something like
(1). (It is worth noting that Fisher s work superseded an

earlier archetyical inerence system, Karl Pearson s method
of moments and familes of frequency curves.

Why is so much of applied statistics cared out in a
Fisherian mode? One big reason is the automatic nature 

Fisher s theory. Maximum likelihood estimation is the orig-
inal jackknife, in Tukey s sense of a widely applicable and
dependable tool. Faced with a new situation, the working
statistician can apply maximum likelihood in an automatic
fashion, with little chance ' (in experienced hands) of going
far wrong and considerable chance of providing a nearly
optimal inference. In short, he does not have to think a lot
about the specific situation in order to get on toward its
solution.

Bayesian theory requires a great deal of thought about
the given situation to apply sensibly. This is seen clearly in
the efforts of Novick (1973), Kadane, Dickey, Winkler,
Smith , and Peters (1980), and many others to at least par-
tially automate Bayesian inference. All of this thinking is
admirable in principle, but not necessarly in day-to-day
practice. The same objection applies to some aspects of
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Figure 1. Four Basic Statistical Operations and How They Re-
late to Estimation. Source: Efron (1982b, fig. 2).

NPW theory, for instance, minimax estimation procedures
and with the same result: they are not used very much.

Not all of statistics is inference. The little diagram of all
of statistics in Figure 1 (reprinted from Efron 1982b) stas
at the bottom with "enumeration " the collecting and listing
of individual datum. The diagram proceeds upward to the
reuction of the raw data to more understadable form though
the adversaral processes of summar and comparson. This

is the par of the analysis where , usually, the statistician

decides on a reasonable probabilstic model for the situation.
At the top of the diagram is inference. This is the step that
taes us from the data actually seen to data that might be
expected in the future.

Bayesian theory concentrates on inference, which is the
most glamorous par of the statistical world, but not nec-
essarly the most important par. Fisher paid a lot of attention
to the earlier steps of the data analysis. Randomization for
instance, and experimental design in general, is a statement
about how data should be collected , or "enumerated, " for

best use later in the analysis. Maximum likelihood is a
provably efficient way to summarze data, no matter what
paricular estimation problems are going to be involved in

the final inference (Efron 1982b). The NPW school has also
contrbuted to the theory of enumeration, notably in the

areas of survey sampling and effcient experimental design.
Fisher s theory culminated in fiducial inference , which

to me and most current observers looks like a form of ob-
jective (as opposed to subjective) Bayesianism. I wil dis-
cuss the problems and promise of objective Bayesianism

later, but it is interesting to notice that fiducial inference is
alone among Fisher s major efforts in its failure to enter
common statistical application. In its place, theNPW theory
of confidence intervals dominates practice, despite some
serious logical problems in its foundations.

THE NPW SCHOOL

Unlike Bayes and Fisher, the NPW school does not insist
that there is a correct solution . for a given inferential situ-
ation. Instead, a par of the situation deemed most relevant
to the investigator is split off, stated in narow mathematical
fashion , and it is hoped, solved. For example, the correct
Bayesian or Fisherian inference for in situation (1) leads
directly to the correct inference for l' = 1/(1 + e), but this

is not necessarly the case in the NPW formulation. (What
is the uniform minimum varance unbiased estimate of 1'?)

The NPW piecewise approach to statistical inference has

been justly criticized by Bayesians as self-contradictory, /

inconsistent, and incoherent. The work of Savage, de Pi
neUi, and their successors shows that no logically consistenl '

inference maker can behave in such a non-Bayesian way. 

The reply of the NPW school is that there is no reason to:

believe that statistical inference should be logically consis .

tent in the sense of the Bayesians , and that there are gooa'

practical reasons for approaching specific inference prob.
lems on an individual basis.

As an example consider the following problem: we ob.
serve a random sample XI' X2, . . . , XIS from a continuous:

distrbution on the real line and desire an interval estima :
for the median of F. The experiment producing the Xi 

a new one, so very little is known about F. 
A genuine Bayesian solution seems difficult here, sinc

it requires a prior distrbution on the space of all distrbutions

on the real line. Frequentist theory produces a simple so.

lution in terms of a confidence interval based on the orde '

statistics of the sample,

(X(3)' X(12)

with probability . 963, no matter what may be. The fa .

that this solution, unlike a Bayesian one , does not also solv

the corresponding problem for say 1J = 50% trmmed me
of does not dismay the frequentist, paricularly if a sat

isfactory Bayesian solution is not available. 

The Bayesian accusation of incoherency of the frequentis .

cuts both ways: in order to be coherent Bayesians have 

solve all problems at once, an often impossible mental exercise. . C

As another example consider "rejecting at the .05 level.' ,

The inconsistencies of this practice are well documented' i (
the Bayesian literature (see Lindley 1982). On the oth :
hand it is one of the most widely used statistical ideas. I ,
popularty is founded on a crucial practical observation: i

is often easier to compare quantities than to assign the
absolute values. In this case the comparson is between 
amount of evidence against the null hypothesis provided b
different possible outcomes of the data. For testing 

Ho: x

N(O, 1) versus H N(2 1), we know that a larg

observed provides greater evidential value against Ho 

in favor of H\, even if we cannot absolutely quantify "

. ,

idence.

, .

A Bayes solution to this problem

, "

the aposteriori od , 

ratio is 7 to 1 ih favor of H " is more satisfactory th .: t

the data are significant at the .05 level, " but it also requir
: . t

more input. In fact , it tacitly implies that we have assign
an absolute measure of evidence to every possible outcome

. r

Absolute here means that the meaning of 7 to 1 is the sam
' s

no matter what experiment it came from. (Good' s (196 :

Bayes-non-Bayes compromise suggests using Bayesian id
in a comparative mode, but this is the only example I know. !

The hear attack decision tree (Fig. 2) ilustrates anoth. ,
diffcult situation for the honest Bayesian. The tree puro 

. .

to predict coronar patients with high risk of dying (pop .
ulation 2) on the basis of varables observed at hospi

admission. A s ries of dichotomous observat ons are m

for example, hIgh or low kmase level , WhICh result m i
final prediction. The nodes marked "2" on the tree predi 

death. Of the 389 patients classified by the tree, only 1 ou ;
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Figure 2. A Decision Tree for Classifying Heart Attack Patients Into Low Risk of Dying (population 1) or High Risk of Dying (population
2). Smaller values of the decision variables go to the left. Circled numbers at terminal nodes indicate population prediction. For example, 6
of the 389 patients in the training set end up at T6, from population , 2 from population 2; these patients would all be predicted to be in
population 2. Abbreviations: PKCK. peak creatinine kinase level; MNSBP, minimum systolic blood pressure; SBP, systolic blood pressure;

, respiration rate; HR, average heart rate; SV, superventricular arrhythmia; HB3, heart block 3rd degree; PEDEMA. peripheral edema; F
Fisher linear discriminant function, differing from node to node. Source: Efron (1982a, fig. 7. 1).
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of 30 deaths was misclassified, that is , predicted to live.
Can we believe that the tree has 96. 7% probability of suc-
cessfully predicting deaths?

Because the medical investigators had little prior knowl-
edge of the situation , the tree was constructed by an elab-
orate data-fitting procedure , which in fact was designed to
maximize the apparent success rate. At each stage the di-
chotomous variable to be used and the splitting point de-
fining "high" or " low" were chosen to give the maximum
apparent difference between populations 1 and 2. A boot-
strap analysis , much like a cross-validation , gave an un-
biased estimate of successful prediction of death of about
70%, rather than 96.7%, for this tree. (Details appear in
sec. 7. 6 of Efron 1982a.

The fact that the observed data were used to constrct
the tree , and how they were used , makes no difference to
the Bayesian , since it has no effect on the likelihood func-
tion. This is similar in spirit to the fact that the stopping
rule used in a sequential procedure has no Bayesian con-
sequence. It makes a world of difference to the frequentist.
If exactly the same tree had been constructed by a less
flexible rule , the unbiased estimate would move closer to
the observed value 96.7%. This is incoherent behavior. The
Bayesian estimate, whatever it is, would not change.

Ad hoc " is a pejorative adjective in Bayesian descrip-
tions of frequentist statistics. On the other hand, ad hoc

reasoning produces a reasonable answer here, in a problem
that seems far too complicated for a full Bayesian solution.
The right to split off the simple par of a complicated in-
ference problem should not be the exclusive property of the
frequentists, but I am not aware of much Bayesian activity
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along these lines. The coherency approach of Savage and
de Finetti seems to have discouraged it. (For a counterex-
ample to this statement see Boos and Monahan , in press.

The NPW school invented decision theory, but it is not
decision theory that separates them from the Bayesians. In
fact , Bayesians have made good use of decision theory. The
paring of the ways occurs on the crucial issue of () averages,
expectations taken with the state of nature () fixed. In other
words, frequentist calculations. Controlling, or at least com-
puting, () averages is central to the NPW approach and
irrelevant to the Bayesians. This brings us to the topic of
objectivity, in my opinion the linchpin of non-Bayesian
success with statistical practitioners.

OBJECTIVITY

So far I have been careful not to define the kind of Bayes-
ian theory under criticism : The dominant Bayesian school
and the one with the legitimate claim to philosophic co-
herency, is the subjective Bayesianism of de Finetti and
Savage. Now by definition one cannot argue with a sub-
jectivist, so I wil just state the obvious fact: though sub-
jectivism is undoubtely useful in situations involving personal
decision making, for example, business and legal decisions
it has failed to make much of a dent in scientific statistical
practice. The nature of scientific communication makes me
doubt that it ever wil.

Scientific objectivity " is more than a catch-phrase. Strct
objectivity is one of the crucial factors separating scientific
thinking from wishful thinking. Complete objectivity about
one s own work is a little much to expect from a human
being, even a scientist , but it is not too much to expect from
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one s colleagues. A prime requirement of any statistical

theory intended for scientific use is that it reassures oneself
and others that the data have been interpreted fairly.

With this in mind, it is not surprising that intuitively

fair statistical ideas , like unbiasedness , confidence in-

tervals, and .05 significance , are immensely popular with

the statistical public. Ideas that do not pass the test of ob-
jectivity are not much used. This includes NPW ideas as
well as Bayesian ones , for example, James-Stein estima-
tion. (An interesting borderline case, which could go either
way depending on how it develops , is robust estimation.

Of course there is no scientific law that says that objec-
tivity must be interpreted in a frequentist sense, and in fact
there is another line of Bayesian thought that attempts to
deal directly with the issue of fairness. I call this "objective

Bayes theory" to differentiate it from the Savage-de Finetti

approach. Bayes and Laplace were objective Bayesians , and

in this century, Jeffreys (1961) wrote a famous book on the
subject. The goal of objective Bayesianism is to produce
prior distrbutions that capture the idea of objectivity.

Consider situation (1) again. The obvious prior here is
the improper one, spreading probability mass for uni-

formly from - 00 to + 00 , often denoted simply by dO.

A Bayesian using this prior obtains good frequentist results.
The central 90% aposteriori interval for 0, for example,

agrees exactly with the standard 90% confidence interval.
Next consider the situation where we observe

lJJ

:-.

J - 

), 

I),

which is just two independent copies of (1). In some recent
work it was necessar for me to make inferences about the
parameter A = 0 Oz. It seemed intuitively reasonable, and
objective, to use the improper prior 

which spreads

probability mass for (0 , Oz) uniformly over the entire plane.
As Table 1 shows, the aposteriori central 90% probabilty

interval for A derived from the prior 
does not have

good frequentist properties. For values of (0 , Oz) in the

first quadrant, it gives overly low probabilties of missing
A on the left and overly high probabilties of missing A on
the right. From a frequentist viewpoint we have not been

very objective at all, having biased the interval estimates

toward the origin.
Recently Charles Stein has given a method of constrcting

priors that have better frequentist properties (Stein 1982).

Table 1. Theoretical Versus Actual Probabilty of
Not Covering A = ()1 Using the Central 90%

Aposteriori Interval Based on the
Improper Prior d0

Theoretical

, 9

(0,
(2,
(3,
(4,
(5,
(1, 10)

050

002 (006)
023 (036)
029 (041)
031 (046)
036 (048)
045 (053)

050

002 (006)
087 (065)
074 (053)
070 (047)
064 (043)
051 (053)

NOTE: Figures In parenthesas are, easentlally, the same probabilities using the Improper
prior (9 + 9 )'12 d9, d92.
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For the parameter A, Stein s theory suggests using the im. \ 

proper prior (Or + ODlIZ and Table i shows that, 

this does indeed give better frequentist coverage probabil.
. Line

ities. (In fact, these figures were derived for the bias-cor. . 

rected percentile intervals , sec. 10.7 of Efron (1982a), and

it was then verified that these intervals were almost the same'

as Stein
The point of the example is that the theory of Bayesian

objectivity cannot be a simple one. The correct objective
prior seems to depend on which parameter we want to es-

timate. In higher dimensions when we have several param- .

eters rather than just two , these problems become acute: HI

(Efron 1982b). This does not mean that the situation i

hopeless. Even a parial solution to the problem of Bayesian

objectivity would likely be a valuable contribution to sta- tl .

tistical theory and practice. As a hopeful prototype, the ne

Bayesian explanation of the James-Stein estimator has. WI

deepened our understanding of this potentially wonderful" so

tool. The whole subject of empirical Bayes can be thought. wI

of as an exercise in Bayesian objectivity-trying not to put 
more information than necessar into the prior-and more

progress in this area can be expected.

SUMMARY : TI

(2)

A summar of the major reasons why Fisherian and NPW

ideas have shouldered Bayesian theory aside in statistical el,practice is as follows: i ti(

1. Ease of use: Fisher s theory in paricular is well set. pi

up to yield answers on an easy and almost automatic basis. w
2. Model building: Both Fisherian and NPW theory pay

, b:

more attention to the preinferential aspects of statistics. 

3. Division of labor: The NPW school in paricular al-
' CI

lows interesting pars of a complicated problem to be broken 
off and solved separately. These parial solutions often make

" n:

use of aspects of the situation , for example, the sampling: n

plan, which do not seem to help the Bayesian. 
' d

4. Objectivity: The high ground of scientific objectivity 
has been seized by the frequentists.

None of these points is insurmountable, and in fact, there

have been some Bayesian efforts on all four. In my opinion

a lot more such effort wil be needed to fulfill Lindley
prediction of a Bayesian 21st century. 

(Received July 1985.
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This discussion of Efron s elegant paper reminds me of
t! v story of the reaction of a jealous mathematician to a
new theorem. "This theorem is irelevant. Moreover, it is
wrong. Besides , I derived it long ago. " I wish (a) to add
some reasons why not everyone is a Bayesian , (b) to explain
why everyone is , should be, or wil soon be a Bayesian
and (c) to claim that (objective) Bayesianism is wrong.

1. WHY NOT EVERYONE IS A BAYESIAN

NPW
:istical

Teaching

Statistical practice changes slowly because teaching of
elementar statistics changes slowly. Most statistical prac-
tice is at a rather elementar level , although frequently ap-
plied to complex problems. It is dedicated to communicate
with people with meager statistical training and constrained
by conventions in elementar texts. Therefore, Bayes
theorem is relatively abstract and less intuitive than appli-
cations of proportions, means , and standard deviations.

Once sociologists and physicians have leared about sig-
nificance levels well enough to use them, a major reorga-
nization of the thought processes is required to adapt to
decision theoretic or Bayesian analysis. Guttman (1978) has
railed for years about the stargazing habits (associated with
significance levels .01 and . 05) of his fellow sociologists
which he attrbutes to poor teaching on the par of the sta-
tistical profession.
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Idley Practice Versus Theory

The popularty of Fisherian theory stems in par from the
byproducts of the analysis suggested by the theory. Analysis
of varance is one of the most important data analytic tools
in statistics. This tool stems from a hypothesis-testing for-
mulation that is difficult to take seriously and would be of
limited value for making final conclusions. Its importance
stems from the fact that most scientific and statistical prac-
tice is concerned , not with grand final conclusions, but with
many small steps gradually contrbuting clarty and order
in moderately confused situations. Theory serves as a guide
and enhances intuition , and it should not be used as a pre-
scription requiring optimal behavior. Fisherian theory pro-
vides relatively simple, effective tools, the robustness of
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Comment

which seems apparent in circumstances in which the Bayes-
ian and decision theorist may find it difficult to operate.

By the time clarty is attained, there is little additional
need for sophisticated statistics or for statisticians. By then
the issues' are clear , the appropriate experiments are evident
the noise factors are reduced to minor significance , and the

conclusions are obvious to any intelligent observer. At this
point, it is usually forgotten that a statistician ever played
a useful role.

WHY EVERYONE IS, SHOULD BE
OR WILL BE A BAYESIAN

How I Am a Bayesian

In doing applied statistics , I feel relatively uninhibited
and engage in many practices that might be frowned on by
careful dogmatists. With the help of theory, I have devel-
oped insights and intuitions that, I believe, prevent me from
giving undue weight to generalizations drawn from exces-
sive data dredging or other forms of statistical heresy. This
feeling of ease and freedom , however , does not exist until
I have formulated some decision theoretic and Bayesian
view of the problem. Until then, there is discomfort and the
feeling that the problem is not well stated or understood.
In this sense , I am a Bayesian and decision theorist in spite
of my use of Fisherian tools. Is this a unique position or
are most of us closet Bayesians and decision theorists in
this sense?

When Bayesianism Is the Only Way

Whereas most applications of statistics are to small sci-
ence and technology, there are cases in which great issues
are involved. Makers of public policy are sometimes forced
to make decisions on issues for which the scientific foun-
dations are unclear and fundamental data are lacking (e. 

g. ,

acid rain , ozone depletion , the safety of nuclear power , and
carcinogenic effects of diesel fumes). Decisions made noW

in considerable ignorance have important consequences.

Delaying such decisions is also potentially costly. Should
we rely on the vagares of coin tossing, or uninformed public
discussions , or the possibly slightly better scientific anal-
ysis? But scientific analysis in nuclear safety may, for lack
of any real alternative , require a Bayesian fault tree analysis
with priors based more on imagination than on real data.
One hopes that numbers so derived wil not have undue
influence on a public impressed by quantification.

The American Statistician, February 1986, Vol. 40, No.



BA YESIANISM IS WRONG

I shall not review the standard objections to Bayesian
practice. Bayesian philosophy is rather well founded. But
this foundation does not support objective Bayesianism.

Agreement with frequentist theories may be interesting but
is no justification. An attempt at an axiomatization of ob-
jective ignorance leads to the Laplace equally likely prior
to which there are serious objections (Chernoff 1954).

1--

tlJ

;;,

CRITICAL COMMENTS

It is difficult to agree with the notion that empircal Bayes
is an objective form of Bayesian practice. 

It is not clear what a Bayesian estimate in Efron s hear
attack example wil be. The 96.7% estimate is suggested
by naive frequentist intuition. The Bayesian estimate would
be based on a prior that would affect the constrction of the
tree and hence should not be separated from the choice of
tree.

Efron s discussion of the 5% significance level test is
unsatisfying on two levels. First , he interprets the strength

D. V. LINDLEY*

Judging from the general thrst of the aricle , I presume
that the "everyone" of the title is "every statistician" and
the question wil be answered in that sense. The answer is
simply that statisticians do not know what the Bayesian
paradigm says. Why should they? There are very few uni-
versities in the world with statistics deparments that provide
a good course in the subject. Only exceptional graduate
students leave the field of their advisor and read for them-
selves. A secondar reason is that the subject is quite hard
for someone who has been trained in the sampling-theory
approach to understand. It may be that we Bayesians are
poor writers, and certainly the seminal books by Jeffreys
(1961) and de Finetti (1974 , 1975) are diffcult reading, but
it took Savage (see the preface to Savage 1972) several
years to understand what he had done; naturally, it took me
longer. The subject is difficult. Some argue that this is a
reason for not using it. But it is always harder to adhere to
a strict moral code than to indulge in loose living.

What most statisticians have is a parody of the Bayesian
argument , a simplistic view that just adds a woolly prior to

, the sampling-theory paraphernalia. They look at the parody 
see how absurd it is , and thus dismiss the coherent approach
as well. Efron has studied the Bayesian argument more than
have most statisticians , but it is stil only a parody that is
presented in this aricle. Many of the arguments he produces
are distortions of the thing he is attacking.

*D. V. Lindley is retired and resides in Minehead, Somerset T A24 8AQ,
England. Work on this aricle was supported by the Air Force Office of
Scientific Research (AFSC), USAF , Grant AFOSR-81-0122 , with the Uni-
versity of California.
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of the statement about a posteriori odds as a requirement

for more input. Certainly the abilty to make strong state- .

ments is linked to the coherence requirements. But the tacit
assumption of coherence demands very little overt input in 
this problem. Second , the NPW practitioner should be un-
comfortable with the use of 5% significance tests for a
simple hypothesis against a simple alternative. For example

, .

an observation of = 10 in testing N(O 1) versus N(20,
1) not only is significant but suggests that the statistician
model is wrong. Who would use a 5% test for testing N(O , i

1) versus N(. 1) with a single observation? Efron may not
have wished to raise the issue of the universality of 5% and
1 % significance levels , but it seems to intrde and has not
been well addressed.

. '
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It is not tre that " everyone used to be a Bayesian.

" ,

Laplace would use any sensible argument that came along,

, -

and it is often hard to see whether it is Bayesian , in the

modem sense of the term , or not. It would be nearer the .
trth to say "everyone used to use some Bayesian ideas.

" :

But this is tre today: we have all heard of Bayes proce- .
dures-they are admissible.

The advantage of Fisherian methods being automatic is '
correctly emphasized. But Bayesian methods are even more
automatic. What is unknown and of interest? X. What is .
known? H. Calculate p(XIH). How? The probability cal-

culus is the only tool. The Bayesian argumerit providesa; , 
recipe (Lindley 1983). Of course , you have to think , to link ,
reality with the mathematical model. Sampling-theory sta- '

tistics takes place in a Greek hinterland (see below) that

diminishes this connection with reality. It is surprising to 
find Efron defending Fisherian ideas when they have been

' (

so carefully investigated and found inadequate by Basu (1975, I
1977 , 1978). Of course , sampling theorists do not read this

brillant, lucid writer. His results discomfit them. 
It is not tre that "Bayesian theory concentrates on in- 

ference. " If it concentrates on anything, it is decision analy- t
sis and has often been unjustly accused of marketplace phi- : I
losophy. It embraces all of the topics mentioned , including : r

randomization and experimental design. It is a way of ; s
thinking about things ; it is relevant to everyone (Lind- .ley 1985). ' 11

A gross parody is provided in the discussion of the hear 
attack decision tree. "The fact that the observed data were

used. . . makes no difference to the Bayesian , since it has .
no effect on the likelihood function. " But we Bayesians ; S
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have a prior , remember? The discussion of this example is
bedeviled by the fact that we do not have a neat way of
handling multivarate distrbutions in the unt cube of chances

so let me ilustrate by a similar case. In a tral of vareties
to select the best, the merit of the varety that did best in

, the tral is exaggerated if judged by the sample mean, just
as the 96.7% exaggerates the wort of the diagnostic pro-
cedure. But a reasonable prior compensates for this and
shrnks" (to use the popular phrase) the merit of the ap-

parently best varety toward the common mean. Educational
psychologists and actuares have been Bayesians in this
regard since the 1920s. Efron knows this. Why does he not
mention it?

I should have thought that any serious student of the
literature would have said that the objective Bayesian view
is not doing very well at the moment and that it is the
subjective approach that is developing. It is not tre that

strct objectivity is one of the crucial factors separating
scientific thinking from wishful thinking. " The objective
element is the data: interpretation of data is subjective, as

anyone who has interacted with scientists knows. Further-
more , the Bayesian view accepts the data; whereas the sam-
pling-theory approach has to make a subjective embedding
of them in a sample space.

The last example with A = is typical of a sampling
theorist's impractical discussions. It is full of Greek letters
as if this unusual alphabet was a repository of trth. The
situation presumably referred to real things, and the dis-

cussion is almost pointless without them. Even if it were

Ilot
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1), "

1. "
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C. N. MORRIS*

Jre
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I do not know whether there wil be a Bayesian 21st
century, but Efron (1978) once gave that proposition prob-
abilty . 15. Actually, what Bayesian analysis is , and hence
the answer to this question , depends' on the Bayesian with
whom one talks. There seems to be increasing acceptance
of Bayesian ideas. Even if this continues , however, the 21st
century certainly wil not ignore or discard the enormous
gains made by the frequency approach to statistics. For
example , in nonparametric problems and in randomization
Bayesian theory has had relatively litte to contrbute. Rather
a fruency-Bayes compromise seems likely. Bayesian theory
does contrbute much to inference for parametrc models.
If by a "Bayesian 21st century" one means that all statis-
ticians wil be taught something of Bayesian ideas and ap-

plications in combination with the frequentist approach they
now lear , then the statistics profession wil gain, for all
statisticians wil possess a powerful tool not now available
to many of them. For example, Bayes s theory, which is
the correct theory for updating statistical information , often

suggests the appropriate analysis , even if that analysis 
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lis
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*C. N. Morrs is Professor, Deparment of Mathematics and Center for

Statistical Sciences, University of Texas , Austin , TX 78712.
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useful , why should we consider the paricular class ofrep-
etitions used here and unstated? Lindley and Philips (1976)
show how any level can be produced , and I expect that any
coverage probabilty could be managed. Why is a choice
of sample space objective? A Bayesian, faced with repeti-
tions , would lear as he repeated. Thus the repetitions cease
to be identical.

In short, this aricle is an attack on a parody of a serious
argument , and because it is a parody it is easily abused.
Perhaps the author has been fallng over all those bootstraps
lying around. Every statistician would be a Bayesian if he
took the trouble to read the literature thoroughly and was
honest enough to admit that he might have been wrong.
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Comment

later justified in repeated-use frequentist terms. Furter-
more , statistics serves many purposes, and the frequency,
objective Bayesian, and subjective Bayesian viewpoints are
all needed for the varety of situations that arse. 

We all have faced many inference problems for which
we hold vague prior information about the parameter , so ,

vague that we readily abandon it when presente with sharr
information from the experiment. In such cases we do not
attempt to update our prior distrbution; we simply take
directly the likelihood Li 0) as our posterior distrbution for

after observing 

y. 

Or we might improve this slightly by
multiplying Li 0) by a factor 7T( 0) to account for the form
of 0, perhaps approximating 7T by Jeffreys s prior 7T(0) 

( 0), where i( 0) is Fisher s information for 0, and claiming
that (6) = Li 0)7T( 0) is proportional to the posterior den-
sity for O. For parametrc problems with known likelihood
and no prior information to be accounted for, I find the
claim , ascribed to Jeffreys , that 0) is the posterior density
for to be the best jackkife of parametric statistics. It
explains when the MLE is reasonable (if the mode is near
the center of (O)); when the MLE is nearly normal (if
L*(O) is nearly normal), and what to do with nuisance pa-
rameters (integrate them out). It tells us to use observed
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information , not expected information , to approximate var-
iances (the Efron-Hinkley result), and it yields inferences
conditional on the data. Efron estimation example
reminds us that this method does not work perfectly in
multiparameter problems; but for a range of parametrc prob-
lems, I believe this objective Bayesian method generally
wil outperform Fisher s maximum likelihood paradigm , or
any other automatic frequentist competitor.

Empirical Bayes inference, to which Efron has contrb-
uted significantly, provides a perspective from which the
frequency-Bayes controversy may be viewed. Empircal
Bayes (Morrs 1983) involves two families of distributions:

one,fe (Y), for the data given the parameters E e, and

another family, II , of possible distributions for the param-
eters. If risk evaluations of a procedure are to be made
they are to include (at least) the double integral expectation
of the loss function over both the data and the parameters
for each distribution, 7T E II , thus producing risk function
r( t). The key is that II is assumed known. In empirical
Bayes modeling, just as when choosing a family of sampling
distrbiltions , the statistician ordinarly would limit II to be
substantially smaller than all possible distributions , perhaps
choosing a parametrc family of distributions. Then the data
are used to lear about the correct 7T in II via the marginal
likelihoodj;(y) of the data.

Some Bayesians wil object to the frequency-like empir-
ical Bayes averaging with respect to the data. Such averages
however, reassure statisticians developing a procedure or
program for repeated use because these averages provide a
standard of objectivity by calibrating the procedure over a
rage of applications. Rubin (1984) elaborates on these points.
Of course, Bayesians are right in that the derived standards
do not necessarly apply to the procedure for any paricular
application or data value.

The empirical Bayes model shows us that Bayesian and
frequentist statistics include only the two most extreme cases
of all possible models for the parameters in a statistical
analysis. Bayesian theory is the case for which the statis-
tician can limit II to have exactly one member. Frequentist
theory represents the other extreme, when II corresponds

to all possible distrbutions on e. (Then all "atom distribu-
. tions on e, each putting point mass at some E e, are 

, and the double integral risks r( 7T, t) for these atom
distributions become the single integral risk functions R( 0,
t) used in frequentist evaluations. ) There are practical prob-
lems for which intermediate information about II can be
identified , however, neither at the Bayesian nor the' fre-
quentist extreme. Since the data then can be used to evaluate
the adequacy of this choice via the marginal likelihood , a

Bayes-frequency compromise can be achieved via the em-
pirical Bayes model. Thus it seems inappropriate that sta-
tistics in the 21st century should settle exclusively at either
pole, Bayesian or frequentist.

Bayesian statistics provides the cornerstone for empirical
Bayes theory. For example, consider the simple case of

estimating normal means from suffcient statistics 

N( Oi' VJ independently, i = 1 , 2

, . . .

k, with = var(YJ
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known. Then a rule of the form Oi = (1 - BJY BilL 

desired , with shrnking toward a guess at the prior
mean of the OJ and with i larger for large than for small

The frequentist minimax formulation, which so suc- S.
cess fully produced Stein s estimator in the "equal varances
case, for all i , gives the incorrect shrnking pattern
for unequal varances by requirng to decrease, not in-
crease , as increases. Bayesian theory, assuming ex- 
changeable prior distributions with Oi N(IL, A): 

independently, var( OJ, suggests the quite reasonable
shrinkage pattern V/(V A). thi

Bayesian methods also provide the only reasonable an- oft

swer to the question of accuracy of shrnkage estimators, ' ve

revealing in the equal varances case the varability sr 

var( O;jata) of the estimator OJ (1 - B)Y BY to be 
sr= V(1 B) VB/k v(Y

as the (posterior) variance of Oi given the data (Morrs 1983).
Here fj is the estimated shrinkage factor of the common
value V/(V A). The first term in sr is an estimate

of the residual varance V(1 B) of the Bayes rule; the
second is a penalty for not knowing the prior mean IL and
instead using Y; and the third is an additional penalty for'
not knowing the prior varance and therefore using 

instead of B. Using introduces the error (B B)(Y
1', which has varance , given the data, v(Y - 1'2 V =
var(Bldata). This formula for Si follows easily from Bayesian
moment calculations, but frequentist methods have given
no hint at an appropriate value. Thus it is an excellent
example not only of how Bayesian reasoning provides a
way for modeling distrbutions for parameters, as empirical
Bayes does , but also of how it leads to the proper form for
parametric procedures. Paradoxically, however , frequentist
calculations, not Bayesian calculations , have suggested the
appropriate noninformative distrbution for the prior var-
ance needed to complete these calculations (taking 

be uniformly distrbuted on (0 , 00) works well).
To conclude, practical statisticians encounter a varety of

problems , and fruency, objective Bayes , subjective Bayes
and empirical Bayes methods provide a range of possible
responses. There can be no clear victory for any approach
for all applications; rather, we should train statisticians for
a frequency-Bayes compromise so that they can more flex-
ibly respond to new situations. In the context of the title
rhetorical question, even if everyone is not a Bayesian

statisticians need greater exposure to Bayesian ideas than
they now receive.
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S. JAMES PRESS*

The title of this paper is so provocative , and the content
is so well handled , that I could not resist Efron s invitation
to add my own comments.

First , I must point out that I have also attempted to address
this question (Press 1985 , sec. 2. 1). The answers I have
offere in that monogrph focus on thee aras: (a) objectivism
versus subjectivism; (b) choice of the "public policy prior

and (c) the vested interest some statisticians have in fre-
quentist methodology.

The first two of my reasons have also been given by
Efron; so we agree that these two issues are par of why
everyone is not (yet) a Bayesian.

Efron points out in his summar (Sec. 6) that " the high
ground of scientific objectivity has been seized by the fre-
quentists. " I agree with this conclusion , although I deplore
the underlying rationale. It is my view that the Bayesian
paradigm admits both objectivity and subjectivity, with the
former appropriate for many situations involving scientific
reporting and public policy decision making and the latter
appropriate for all other situations. There are subjective, or
personalistic , prior distributions that must be assessed for
the subjective inference or decision making problem , and
there are "vague " or " indifference" priors for the objective
inference or decision making problem. But because so much
attntion has been focused on the subjective aspets of Bayes-
ian statistical procedures , we have tended to lose sight of
the objectivity inherent in the approach , which was how
Laplace saw the paradigm in the early 1800s, and which is
how many Bayesian statisticians of the 20th century see the
objectivity problem (e. , see Jaynes 1983 and Jeffeys 1961).
. Of course there are questions about which prior to use to
express objectivity. Efron seeks the best method for accom-
plishing this; I applaud him for focusing on an issue that is

, so important to the field of statistics. Bayesians wil tra-
" ditionally use the improper uniform distrbution for un-

knowns lying on the whole real line (or they wil use the
uniform distribution for the logs bf the unkowns when they
lie on the positive axis). But we may be able to do better
with an entirely new probabilty system. In Press (1985
sec. 1.2. 1) I assert:

It is clear that our field is in a transitional state. What is needed is a formal,
axiomatic theory of probability which is conditional in the sense of Renyi
and which permits probabilities on the entire real line.

In Section 3 Efron claims that "Bayesian theory concen-
trates on inference " although he acknowledges in Section 5
that "subjectivism is undoubtedly useful in situations in-
volving personal decision makng, for example, business
and legal decisions. " I must point out that the basic statistics
course now typically presented in many business schools
across the countr is a course in Bayesian decision making.
Students are taught that much public policy decision makng
on a day-to-day basis does not involve NPW -type analysis;

OS. James Press is Professor, Deparent of Statistics , University of
California, Riverside, CA 92521. , 
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Comment

there is no time to collect any data; the decisions are made
subjectively, using formal or informal priors. When data
are collectible , students are taught to make decisions in a
Bayesian way. Many well-read aricles and books attest to
this fact (e. , see Pratt , Raiffa , and Schlaifer 1964, Raiffa
1968 , Raiffa and Schlaifer 1961 , Schlaifer 1969, and Wink-
ler 1972). But because Bayesian decision making involves
averaging only over the prior, or only over the posterior
density conditional on the observed data , and not averaging
over observations not yet taen (the entire sample space),
and (therefore) because Bayesians are generally not con-
cerned with admissibility, it is assumed that Bayesian pro-
cedures are largely inferential rather than decision theoretic.
This impression should be revised.

In Section 3 Efron discusses the automated nature of Fish-
s theory, pointing out that the MLE " is the original jack-

knife , in Tukey s sense of a widely applicable and dependable
tool." In the same sense that maximizing the likelihood
functions is mechanical , so is the simple application of the
Bayesian paradigm. In either the frequentist or the Bayesian
approach, however, the statistician cannot use his tools
mindlessly and mechanically. If he merely wishes to turn a
crank , the frequentist can summarze his data with a like-
lihood function, and the Bayesian can , analogously, use a
vague prior and summarze his beliefs with the induced
posterior density. But what frequentistdoes not have to
approach his problem gingerly when he knows in addition
that 2 :5 () :5 5 , and in the context of the problem , () :: 3
makes little sense! The careful statistician does not apply
his procedures mechanically, be he frequentist or Bayesian.
The Bayesian has a formal introspection procedure for in-
troducing his prior information , however, which for many
problems is a great advantage. As Efron implies , however
automating the procedure of Bayesian analysis (in the sub-
jective case) has proved to be difficult.

Finally, I would like to comment on the hypothesis testing
problem. Efron s interpretation of Bayesian hypothesis test-
ing (Sec. 4) " tacitly implies that we have assigned an ab-
solute measure of evidence to every possible outcome.
There are several methods of testing hypotheses from a
Bayesian point of view (just as the frequentist might use
likelihood ratio testing, union-intersection methods , robust
procedures, etc. ). I wil restrict myself to the use of the
posterior odds ratio procedure (Jeffreys 1961 , chapters 5

and 6; see also Zellner 1971). This procedure does not

involve "every possible outcome ; it involves only the ob-
served data. Specifically, the log of the posterior odds is
the sum of the logs of the prior odds and the likelihood
ratio , and the likelihood ratio depends only on the observed
data. Efron s use of the term "absolute measure of evi-
dence" begs the question , disputed among Bayesians , of
whether experimental design parameters should be included
in the prior. Should the posterior odds ratio differ depending
on the nature of the experiment? For example, Bayesian

purists claim we should make the same posterior inferences
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about the parameter in binomial sampling as we do in
negative binomial sampling, for which the experiment is
different but the is the same. That is, strct adherence to

the "lielihood priciple" is what Efron clais for the Bayes-

ian approach. Other Bayesians who would admit experi-
mental design parameters into the prior distribution would
have the posterior odds ratio reflect these experimenta de-
sign differences.

In SUnlar, it is only in actively seeking answers to the
basic question Efron has raised that our field can begin to
understand the real theoretical and applied adv:antages of
one approach over another and ultimately arve at a unified
foundational approach.

1--

ADRIAN F. M. SMITH*

In a recent review presented at the 150th Anniversar
Meeting of the Royal Statistical Society (Smith 1984), I
wrote that "Bayesian thinking requires a fairly formal , strc-
tured frame of discourse, and is thus not directly applicable
to every kind of activity in which statisticians are involved. "
I am very happy, therefore, to accept those pars of Efron
analysis that are predicated on the recognition that "not all
of statistics is inference. " This much is surely very common
ground.

A great deal of theoretical and applied statistics is con-
cerned , however , with analysis in the context of more-or-
less formal models, and here Efron himself acknowledges
the "powerful theoretical reasons for preferrng Bayesian
inference" and the "disturbing catalogue of inconsistencies
in the frequentist point of view. " Why, then , in this infer-
ential context , is everyone not a Bayesian? Efron s answer

appears to be that the vast majority of statisticians are com-
mitted to an intuitive notion of statistical "fairess " no-

where defined but apparently common to concepts such as
unbiasedness and confidence intervals and underpinning the

key" (but also undefined!) concept of " scientific objec-
tivity. "

Well, insofar as I understand this notion of "fairess,
it appeals to long-run frequencies , violates an equally " in-

tuitive" conditionality principle, and is thus directly re-
sponsible for those " disturbing inconsistencies" to which

Efron refers. As for " scientific objectivity, " I personally

am only able to make sense of the concept in the context

*Adrian F. M. Smith is Professor of Mathematical Statistics, Depar-
ment of Mathematics, University of Nottingham, University Park , Not-
tingham , NO? 2RD , England.
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, E

of a Bayesian philosophy that predisposes one to seek to n
report, openly and accessibly, a rich range of the possible 
belief mappings induced by a given data set , the range being, cI

chosen to reflect and potentially to challenge the initial 0
perceptions of a broad class of interested paries. If a fairly

shar consensus of views emerges from a rather wide spread 
of initial opinions , then , and only then, might it be mean " t(

ingful to refer to "objectivity. " In the aricle previously, 0
referred to, I remarked that : tl

one of the most attractive features of the Bayesian approach is its recog- IT
nition of the legitimacy of a plurality of (coherently constrained) responses

to data. Any approach to scientific inference which seeks to legitimize an ' e;

answer in response to complex uncertainty is , for me, a totalitaran parody

of a would-be rational human learing process, (p. 250) 

An understanding of why this kind of philosophy does a)
not hold sway continues to elude me but seems in any case " B

to lie largely outside the purview of Efron s rather narowly . G

focused analysis. Maybe it has more to do with Kuhnian .

scientific cultural continuities? Or computational con. ' OJ
straints? Or educational and institutional inertia? Or perhaps' at
most statisticians now are Bayesians (when it matters!), but 
they do not want to spoil the fun by admitting it. 
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This aricle was actually the text of a talk delivered at a
conference on Bayesian statistics held at the Virginia Poly-
technic Institute and State University. The question its title
asks was not intended to be rhetorical or sarcastic. Despite
the considerable philosophical advap.tages of the Bayesian
approach , most scientific data analysis is cared out in a
non-Bayesian framework. Why? The talk attempted to an-
swer this question , arguing mainly from a set of examples
in which Bayesian analysis is difficult while Fisher/fre-
quentist solutions are relatively easy.

The examples are genuine ones, suggested by my own
picaresque adventures as an applied statistician in the Stan-
ford Medical School. For instance , the product-of-normal-
means problem arose in the context of comparng two non-
nested linear models (Efron 1984). There is nothing paric-
ularly strg or unusual about these examples , but of coure
that was the point of my talk.

Here are a few brief comments on the commentares. I
was surprised at how little support objectivity aroused.
Bringing some degree of consensus to the interpretation of
noisy data is certainly one of our profession s principal

accomplishments. Perhaps, as Smith suggests , we have pur-
chased consensus at a high price in intellectual tyranny, but
our scientific clientele seem happy to pay this price.

Understanding the' tre meaning of objectivity has oc-
cupied statistical thinkers from Bayes , Laplace , and Gauss
to Fisher, Neyman , and Jeffreys. Fisher s phrase

, "

the logic
of uncertain inference, " is parcularly evocative of a theory
that goes from the data and a family of possible probability
models to a consensus agreement of reasonable conclusions.

Such a theory does not yet fully exist, and may never
exist , but I hope we have not given up looking for it. In
the discussion , only Press had specific good words to say
for objectivity. On the other hand, the empirical Bayes

approach , very nicely stated by Morrs, has strong objective
Bayes connections. These connections are made explicit in
Good' s theory of Type II maximum likelihood (Good 1965).

Lindley makes the serious complaint that I have criticized
only a parody of the true Bayesian argument. The hear
attack decision tree was paricularly offensive. I chose this
example because it shows how a simple frequentist tech-
nique , cross-validation or the bootstrap in this case , can

make headway even in very complicated situations. Devices

;e;
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;S,

:s:

~ 1986 American Statistical Association

Reply

like cross-validation violate the likelihood principle; they

ask what would happen for data sets other than the one
actually observed and so are non-Bayesian according to
Lindley s strict definitions. What is the " true Bayesian ar-
gument" in this example? It is not that I do not think such
an argument exists , but Lindley has not given us the slightest
idea of what it might be. This is a practical point , not a
philosophical one , but practical points are crucial in tring
to understand why Bayesian theory is not much used in
scientific practice.

Chernoff can be excused a feeling of deja vu, since pars
of my talk , in paricular the decision tree example , were
based on memories of his own lectures. Section 1. b of his
discussion is a paricularly neat statement of the role of the
statistician in scientific practice. It was not my intention to
separate decision theory from statistical inference in general
(the top box in Fig. 1), as both Chernoff and Press thought
I was doing. The relationship between Fisherian and deci-
sion-theoretic inferential systems is discussed in Efron
(1982b).

My talk was intended as an argument for more Bayesian
research , not less. The problems of practical Bayesian in-
ference should be given top priority. Morrs s discussion is
a promising model of how Bayesian theory could be aimed
at the actual needs of applied statisticians. 

Finally, I must war Professor Lindley that his brutal
and largely unprovoked , attack has been reported to FOGA
(Friends of the Greek Alphabet). He wil be in for a very
nasty time indeed if he wishes to use as much as an epsilon
or an iota in any future manuscript.
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ADDITIONAL COMMENT BY LINDLEY

Brad Efron asks what the true Bayesian argument might
be in the hear attack case. (nearly) Bayesian approach
was given by David J. Speigelhalter and Robin P. Knil-
Jones (Journl of the Royal Statistical Society, Ser. A (1984)
147 35- , with discussion).
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