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WHY I AM NOT A BA YESIAN*

CLARK GLYMOUR

The aim of confimation theory is to provide a true account of the prin-
ciples that guide scientific argument in so far as that argument is not , and
does not purport to be, of a deductive kind. A confimation theory should
serve as a critical and explanatory instrument quite as much as do theories
of deductive inference. Any successful confiation theory should, for
example, reveal the structure and fallacies, if any, in Newton s argument
for universal gravitation, in nineteenth-century arguments for and against
the atomic theory, in Freud's arguments for psychoanalytic generaliz-
ations. Where scientific judgements are widely shared , and sociological
factors cannot explain their ubiquity, and analysis through the lens pro-
vided by confirmation theory reveals no good explicit arguments for the
judgements, confirmation theory ought at least sometimes to suggest some)
good arguments that may have been lurking misperceived. Theories of
deductive inference do that much for scientific reasoning in so far as that
reasoning is supposed to be demonstrative. We can apply quantification
theory to assess the validity of scientific arguments , and although we must
almost always treat such arguments as enthymematic, the premisses we
interpolate are not arbitrary; in many cases

, as'when the same subject-
matter is under discussion , there is a common set of suppressed premisses.
Again, there may be differences about the correct logical form of scientific
claims; differences of this kind result in (or from) different formalizations
for example, of classical mechanics. But such differences often make no
difference for the assessment of validity in actual arguments. Confrmation
theory should do as well in its own domain. If it fails , then it may stil be of
interest for many purposes, but not for the purpose of understanding
scientific reasoning.

The aim of confimation theory ought not to be simply to provide
precise replacements for informal methodological notions, that is, expli-
Reprinted from Clark Glymour Theory and Evidence (Chicago: University of Chicago Press
1981), 63- , by permission.
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cations of them. It ought to do more; in particular, confiation theory
ought to explain both methodological truisms and particular judgements
that have occurred within the history of science. By 'explain ' I mean
at least that confimation theory ought to provide a rationale for method-
ological truisms, and ought to reveal some systematic connections among
them and, further, ought, without arbitrary or question-begging as-
sumptions, to reveal particular historical judgements as in conformity
with its principles.

Almost everyone interested in confiation theory today believes that
confation relations ought to be analysed in terms of probability rela-
tions. Confiation theory is the theory of probabilty plus introductions
and appendices. Moreover, almost everyone believes that confiation
proceeds through the formation of conditional probabilities of hypotheses
on evidence. The basic tasks facing confiation theory are thus just those
of explicating and showing how to determine the probabilities that confi-
mation involves , developing explications of such meta-scientific notions as
confirmation

, '

explanatory power

, '

simplicity , and so on in terms of
functions of probabilities and conditional probabilities, and showing that
the canons and patterns of scientific inference result. It was not always so.
Probabilistic accounts of confiation really became dominant only after
the publication of Carnap Logical Foundations of Probability (1950),
although of course many probabilistic accounts had preceded Carnap
An eminent contemporary phiosopher (Putnam 1967) has compared
Carnap s achievement in inductive logic with Frege s in deductive logic:
just as before Frege there was only a small and theoretically uninteresting
collection of principles of deductive inference , but after him the founda-
tion of a systematic and profound theory of demonstrative reasoning, so
with Carnap and inductive reasoning. After Carnap Logical Foundations
debates over confmation theory seem to have focused chiefly on the
interpretation of probability and on the appropriate probabilistic explica-
tions of various meta-scientific notions. The meta-scientific notions remain
controversial, as does the interpretation of probability, although, increas-
ingly, logical interpretations of probability are giving way to the doctrine
that probability is degree of belief. In very recent years a few philosophers
have attempted to apply probabilistic analyses to derive and to explain
particular methodological practices and precepts, and even to elucidate
some historical cases.

I believe these efforts, ingenious and admirable as many of them are , are
none the less misguided. For one thing, probabilistic analyses remain at too

1 A third view, that probabilities are to be understood exclusively as frequencies, has been
most ably defended by Wesley Salmon (1969).
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great a distance from the history of scientific practice to be really informa-
tive about that practice, and in par they do so exactly because they are
probabilstic. Although considerations of probability have played an im-
portant part in the history of science, until very recently, explicit probabil-
istic arguments for the confiation of various theories, or probabilistic
analyses of data, have been great rarities in the history of science. In the
physical sciences at any rate, probabilstic arguments have rarely occurred.
Copernicus, Newton, Kepler, none of them give probabilistic arguments
for their theories; nor does Maxwell or Kelvin or Lavoisier or Dalton or
Einstein or Schrodinger or. . . . There are exceptions. Jon Dorling has
discussed a seventeenth-century Ptolemaic astronomer who apparently
made an extended comparson of Ptolemaic and Copernican theories in
probabilstic terms; Laplace , of course, gave Bayesian arguments for astro-
nomical theories. And there are people-Maxwell, for example-who
scarcely give a probabilistic argument when making a case for or against
scientific hypotheses but who discuss methodology in probabilistic terms.
Ths is not to deny that there are many areas of contemporary physical
science where probability figures large in confimation; regression analysis
is not uncommon in discussions of the origins of cosmic rays, correlation
and analysis of variance in experimental searches for gravitational waves,
and so on. It is to say that, explicitly, probability is a distinctly minor note
in the history of scientifc argument.

The rarity of probabilty considerations in the history of science is more
an embarrassment for some accounts of probability than for others. Logi-
cal theories, whether Camap s or those developed by Hintikka and his
students, seem to lie at a great distance from the history of science. Stil
some of the people working in this tradition have made interesting steps
towards accounting for methodological truisms. My own inclination is
to believe that the interest such investigations have stems more from
the insights they obtain into syntactic versions of structural connections
among evidence and hypotheses than to the probability measures they
mesh with these insights. Frequency interpretations suppose that for each
hypothesis to be assessed there is an appropriate reference class of hypoth-
eses to which to assign it , and the prior probability of the hypothesis is the
frequency of true hypotheses in this reference class. The same is true
for statements of evidence, whether they be singular or general. The
matter of how such reference classes are to be determned, and determed
so that the frequencies involved do not come out to be zero , is a question
that has only been touched upon by frequentist wrters. More to the point,
for many of the suggested features that might determne reference classes,
we have no statistics, and cannot plausibly imagine those who figure in the
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history of our sciences to have had them. So conceived, the history
of scientific argument must turn out to be largely a history of fanciful
guesses. Further, some of the propeities that seem natural candidates
for determining reference classes for hypotheses-simplicity, for ex-

ample-seem likely to give perverse results. We prefer hypotheses that
posit simple relations among observed quantities, and so on a frequentist
view should give them high prior probabilities. Yet simple hypotheses
although often very useful approximations , have most often turned out to
be literally false.

At present, perhaps the most philosophically influential view of prob-
ability understands it to be degree of belief. The subjectivist Bayesian
(hereafter, for brevity, simply Bayesian) view of probability has a growing
number of advocates who understand it to provide a general framework
for understanding scientific reasoning. They are singularly unembarrassed
by the rarity of explicit probabilistic arguments in the history of science, for
scientific reasoning need not be explicitly probabilistic in order to be
probabilistic in the Bayesian sense. Indeed, a number of Bayesians have
discussed historical cases within their framework. Because of its influence
and its apparent applicability, in what follows it is to the subjective
Bayesian account that I shall give my full attention.

My thesis is several-fold. First, there are a number of attempts to dem-
onstrate a priori the rationality of the restrictions on belief and inference
that Bayesians advocate. These arguments are altogether admirable , but
ought, I shall maintain , to be unconvincing. My thesis in this instance is not
a new one , and I think many Bayesians do regard these a priori arguments
as insuffcient. Second, there are a variety of methodological notions

that an account of confation ought to explicate and methodological
truisms involving these notions that a confirmation theory ought to ex-
plain: for example, variety of evidence and why we desire it ad hoc
hypotheses and why we eschew them, what separates a hypothesis integral
to a theory from one ' tacked on' to the theory, simplicity and why it is so
often admired, why 'de-Occamized' theories are so often disdained , what
determnes when a piece of evidence is relevant to a hypothesis, and what
if anything, makes the confimation of one bit of theory by one bit 
evidence stronger than the confiation of another bit of theory (or pos-
sibly the same bit) by another (or possibly the same) bit of evidence.
Although there are plausible Bayesian explications of some of these no-
tions, there are not plausible Bayesian explications of others. Bayesian
accounts of methodological truisms and of particular historical cases are of
one of two kinds: either they depend on general principles restricting prior
probabilities, or they don t. My claim is that many of the principles pro-
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posed by the fist kind of Bayesian are either implausible or incoherent

and that, for want of such principles, the explanations the second kind of
Bayesians provide for particular historical cases and for truisms of method
are chimeras. Finally, I claim that there are 

elementary but perfectly

common features of the relation of theory and evidence that the Bayesian
scheme cannot capture at all without serious-and perhaps not 

very plau-

sible-revision.
It is not that I think the Bayesian scheme or related probabilistic ac-

counts capture nothing. On the contrary, they are clearly pertinent where
the reasoning involved is explicitly statistical. Further, the accounts devel-
oped by Carnap, his predecessors, and his successors are impressive sys-

tematizations and generalizations , in a probabilistic framework, of certain

principles of ordinary reasoning. But so far as understanding scientific

reasoning goes, I think it is very wrong to consider our situation to be
analogous to that of post-Fregean logicians, our subject-matter trans-

formed from a hotchpotch of principles by a powerful theory whose out-
lines are clear. We flatter ourselves that we possess even the hotchpotch.
My opinions are outlandish, I know; few of the arguments I shall present in

their favour are new, and perhaps none of them is decisive. Even so, they

seem suffcient to warrant taking seriously entirely different approaches to
the analysis of scientific reasoning.

The theories I shall consider share the following framework
, more or )

less. There is a class of sentences that express all hypotheses and all actual
or possible evidence of interest; the class is closed under Boolean oper-
ations. For each ideally rational agent, there is a function defined on all
sentences such that, under the relation of logical equivalence , the function

is a probability measure on the collection of equivalence classes. The

probability of any proposition represents the agent'
s degree of belief in

that proposition. As new evidence accumulates, the probabilty of a prop-

osition changes according to Bayes s rule: the posterior probabilty of a
hypothesis on the new evidence is equal to the prior conditional prob-

ability of the hypothesis on the evidence. This is a scheme shared

by diverse accounts of confiation. I call such theories 'Bayesian , or

sometimes 'personalist'.
We certainly have grades of belief. Some claims I more or less believe

some I find plausible and tend to believe , others I am agnostic about , some

I find implausible and far-fetched, stil others I regard as positively absurd.
I think everyone admits some such gradations, although descriptions of

them might be finer or cruder. The personalist school of probability the-
orists claim that we also have 

degrees of belief, degrees that can have any

value between 0 and 1 and that ought, if we are rational , to be represent-
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able by a probability function. Presumably, the degrees of belief are to
co-vary with everyday gradations of belief, so that one regards a prop-
osition as preposterous and absurd just if his degree of belief in it is
somewhere near zero, and he is agnostic just if his degree of belief
is somewhere near a half, and so on. According to personalists, then, an
ideally rational agent always has his degrees of belief distributed so as to
satisfy the axioms of probabilty, and when he comes to accept a new
belief, he also forms new degrees of belief by conditionalizing on the newly
accepted belief. There are any number of refiements, of course; but that
is the basic view.

Why should we think that we really do have degrees of belief? Personal-
ists have an ingenious answer: people have them because we can measure
the degrees of belief that people have. Assume that no one (rational) wil
accept a wager on which he expects a loss , but anyone (rational) will accept
any wager on which he expects a gain. Then we can measure a person
degree of belief in proposition by fiding, for fied amount the highest
amount such that the person wil pay in order to receive if 

true, but receive nothing if is not true. If is the greatest amount the
agent is willng to pay for the wager, his expected gain on paying must be
zero. The agent's gain if is the case is v; his gain if is not the case is -
u. Thus

prob(P) (-u). prob( 

p) 

= O.

Since prob (-P) = 1 prob(P), we have

prob(P) =uj(u +v).

The reasoning is clear: any sensible person wil act so as to maxime
his expected gain; thus, presented with a decision whether or not to pur-
chase a bet, he will make the purchase just if his expected gain is greater
than zero. So the betting odds he wil accept determine his degree of
belief.

I think that this device really does provide evidence that we have, or can
produce, degrees of belief, in at least some propositions, but at the same
time it is evident that betting odds are not an unobjectionable device for
the measurement of degrees of belief. Betting odds could fail to measure
degrees of belief for a variety of reasons: the subject may not believe that

2 More detailed accounts of means for determining degrees of belief may be found in Jeffey
1965. It is a curious fact that the procedures that Bayesians use for determining subjective
degrees of belief empirically are an instance of the general strategy described in Glymour 1981
ch. 5. Indeed, the strategy typically used to determine whether or not actual people behave as
rational Bayesians involves the bootstrap strategy described in that chapter.
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the bet will be paid off if he wins, or he may doubt that it is clear what

constitutes winning, even though it is clear what constitutes losing. Things
he values other than monetary gain (or whatever) may enter into his
determination of the expected utilty of purchasing the bet: for example, 
may place either a positive or a negative value on risk itself. And the very
fact that he is offered a wager on 

may somehow change his degree of

belief in 

Let us suppose, then, that we do have degrees of belief in at least some
propositions, and that in some cases they can be at least approximately

measured on an interval from 0 to 1. There are two questions: why should
we think that, for rationality, one s degrees of belief must satisfy the

axioms of probabilty, and why should we think that, again for rationality,
changes in degrees of belief ought to 

proceed by conditionalization?

One question at a time. In using betting quotients to measure degrees of
belief, it was assumed that the subject would act so as to maximize 

expected

gain. The betting quotient determined the degree of belief by determining
the coeffcient by which the gain is multiplied in case that 

is true in

the expression for the expected gain. So the betting quotient determines
a degree of belief, as it were, in the role of a probabilty. But why should

the things , degrees of belief, that play this role be probabilties? Supposing

that we do choose those actions that maximie the sum of the product
of our degrees of belief in each possible outcome of the action and the
gain (or loss) to us of that outcome. Why must the degrees of belief that
enter into this sum be probabilties? Again, there is an ingenious argu-

ment: if one acts so as to maximize his expected gain using a degree-of-

belief function that is not a probability function, and if for 
every

proposition there were a possible wager (which, if it is offered, one

believes wil be paid off if it is accepted and won), then there is a circum-
stance, a combination of wagers, that one would enter into if they were

offered, and in which one would suffer a net loss whatever the outcome.
That is what the Dutch-book argument shows; what it counsels is

prudence.
Some of the reasons why it is not clear that betting quotients are accu-

rate measures of degrees of belief are also reasons why the Dutch-
book

argument is not conclusive: there are many cases of propositions in which
we may have degrees of belief, but on which, we may be sure, no accept-

able wager wi be offered us; again, we may have values other than the
value we place on the stakes, and these other values may enter into our
determination whether or not to gamble; and we may not have adopted the
policy of acting so as to maxie our expected gain or our expected utilty:

that is, we may save ourselves from having book made agaist us by
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refusing to make certain wagers, or combinations of wagers, even though
we judge the odds to be in our favour.
The Dutch-book argument does not succeed in showing that in order to

avoid absurd commitments, or even the possibility of such commitments
one must have degrees of belief that are probabilities. But it does provide
a kind of justifcation for the personalist viewpoint, for it shows that if
one s degrees of belief are probabilities, then a certain kind of absurdity is
avoided. There are other ways of avoiding that kind of absurdity, but at
least the personalist way is one such.

One of the common objections to Bayesian theory is that it fails 
provide any connection between what is inferred and what is the case. The
Bayesian reply is that the method guarantees that , in the long run , every-
one wil agree on the truth. Suppose that are a set of mutually exclusive
jointly exhaustive hypotheses, each with probabilty B(i). Let be a se-
quence of random variables with a finite set of values and conditional
distribution given by P(x lB.) = E(x IB.); then we can think of the values

as the outcomes of experiments, each hypothesis determining a likeli-
hood for each outcome. Suppose that no two hypotheses have the same
likelihood distribution; that is, for 

*- 

it is not the case that for all values
of E(x IBi

) = 

e(x

), 

where the e s are defined as above. Let denote
the first of these variables, where is a value of X. Now imagine an
observation of these random variables. In Savage s words:

Before the observation, the probabilty that the probability given of whichever
element of the partition actually obtains wil be greater than 

B(i)P(P(B
lx) 

aIB

where summation is confined to those for which B(i) 0# O. (1972: 49)

In the limit as approaches infinity, the probability that the probability
given of whichever element of the partition actually obtains is greater
than is 1. That is the theorem. What is its significance? According
to Savage

, '

With the observation of an abundance of relevant data, the
person is almost certain to become higWy convinced of the truth, and it
has also been shown that he himself knows this to be the case' (p. 50).

That is a litte misleading. The result involves second-order probabilities
but these too , according to personalists, are degrees of belief. So what
has been shown seems to be this: in the limt as approaches infinity, an
ideally rational Bayesian has degree of belief 1 that an ideally rational
Bayesian (with degrees of belief as in the theorem) has degree of belief
given greater than in whichever element of the partition actually

3 For further criticisms of the Dutch-book argument see Kyburg, 1978.
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obtains. The theorem does not tell us that in the limit any rational
Bayesian wil assign probability 1 to the true hypothesis and probability 0
to the rest; it only tells us that rational Bayesians are certain that he will. It
may reassure those who are already Bayesians, but it is hardly grounds for
conversion. Even the reassurance is slim. Mary Hesse points out (1974:
117-19), entirely correctly I believe, that the assumptions of the theorem
do not seem to apply even approximately in actual scientific contexts.
Finally, some of the assumptions of stable estimation theorems can be
dispensed with if one assumes instead that all of the initial distributions
considered must agree regarding which evidence is relevant to which hy-
potheses. But there is no evident a priori reason why there should be such
agreement.

I think relatively few Bayesians are actually persuaded of the correct-
ness of Bayesian doctrine by Dutch-book arguments, stable estimation
theorems, or other a priori arguments. Their frailty is too palpable. I think
that the appeal of Bayesian doctrine derives from two other features. First
with only very weak or very natural assumptions about prior probabilities
or none at all, the Bayesian scheme generates principles that seem to
accord well with common sense. Thus, with minor restrictions, one obtains
the principle that hypotheses are confirmed by positive instances of them;
and, again, one obtains the result that if an event that actually occurs is , on
some hypothesis, very unlikely to occur, then that occurrence renders the
hypothesis less likely than it would otherwise have been. These principles
and others , can claim something like the authority of common sense , and
Bayesian doctrine provides a systematic explication of them. Second, the
restrictions placed a priori on rational degrees of belief are so mild, and the
device of probability theory at once so precise and so flexible, that Bayes-
ian philosophers of science may reasonably hope to explain the subtleties
and vagaries of scientifc reasoning and inference by applying their scheme
together with plausible assumptions about the distribution of degrees of
belief. This seems, for instance, to be Professor Hesse s line of argument.
After admitting the insuffciency of the standard arguments for
Bayesianism, she sets out to show that the view can account for a host of
alleged features of scientifc reasoning and inference. My own view is
diferent: particular inferences can almost always be brought into accord
with the Bayesian scheme by assigning degrees of belief more or less 

hoc but we learn nothing from this agreement. What we want is an
explanation of scientific argument; what the Bayesians give us is a theory
of learning-indeed, a theory of personal learning. But arguments are
more or less impersonal; I make an argument to persuade anyone in-
formed of the premisses, and in doing so I am not reporting any bit of
autobiography. To ascribe to me degrees of belief that make my slide from
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my premisses to my conclusion a plausible one fails to explain anything,
not only because the ascription may be arbitrary, but also because, even if
it is a correct assignment of my degrees of belief, it does not explain why
what I am doing is arguing-why, that is, what I say should have the least
infuence on others, or why I might hope that it should. Now, Bayesians
might bridge the gap between personal inference and argument in either of
two ways. In the fist place , one might give arguments in order to change
others ' beliefs because of the. respect they have for his opinion. This is not
very plausible; if that were the point of giving arguments , one would not
bother with them, but would simply state one s opinion. Alternatively, and
more hopefully, Bayesians may suggest that we give arguments exactly
because there are general principles restricting belief, principles that are
widely sub1icribed to, and in giving arguments we are attempting to show
that , supposing our audience has certain beliefs, they must in view of these
principles have other beliefs, those we are trying to establish. There is
nothing controversial about this suggestion, and I endorse it. What is
controversial is that the general principles required for argument can best
be understood as conditions restricting prior probabilities in a Bayesian
framework. Sometimes they can, perhaps; but I think that when arguments
turn on relating evidence to theory, it is very diffcult to explicate them in
a plausible way within the Bayesian framework. At any rate , it is worth
seeing in more detail what the diffculties may be.

There is very litte Bayesian literature about the hotchpotch of claims
and notions that are usually canonized as scientific method; very little
seems to have been wrtten, from a Bayesian point of view, about what
makes a hypothesis ad hoc about what makes one body of evidence more
various than another body of evidence , and why we should prefer a variety
of evidence , about why, in some circumstances, we should prefer simpler
theories, and what it is that we are preferrng when we do. And so on.
There is little to nothing of this inCarnap, and more recent , and more
personalist, statements of the Bayesian position are almost as disappoint-
ing. In a lengthy discussion of what he calls ' tempered personalism , Abner
Shimony (1970) discusses only how his version of Bayesianism generalies
and qualifies hypothetico-deductive arguments. (Shimony does discuss
simplicity, but only to argue that it is overvalued.) Mary Hesse devotes the
later chapters of her book to an attempt to show that certain features of
scientific method do result when the Bayesian scheme is supplemented
with a postulate that restricts assignments of prior probabilties. Unfortu-
nately, as we shall see, her restrictive principle is incoherent.

One aspect of the demand for a variety of evidence arises when there is
4 Moreover, I believe that much of her discussion of methodological principles has only the

loosest relation to Bayesian principles.

-_._- _._-
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some definite set of alternative hypotheses between which we are trying to
decide. In such cases we naturally prefer the body of evidence that wil be
most helpful in eliminating false competitors. This aspect of variety is an
easy and natural one for Bayesians to take account of, and within an
account such as Shimony s it is taken care of so directly as hardly to require
comment. But there is more to variety. In some situations we have some
reason to suspect that if a theory is false, its falsity wil show up when
evidence of certain kinds is obtained and compared. For example, given

the tradition of Aristotelian distinctions, there was some reason to demand
both terrestrial and celestial evidence for seventeenth-centur theories of
motion that subjected all matter to the same dynamical laws. Once again

I see no special reason why this kind of demand for a variety of evidence
cannot be fitted into the Bayesian scheme. But there is stil more. A
complex theory may contain a great many logically independent hypoth-
eses, and particular bodies of evidence may provide grounds for some of
those hypotheses but not for others. Surely part of the demand for a
variety of evidence, and an important part, derives from a desire to see to
it that the various independent parts of our theories are tested. Taking
account of this aspect of the demand for a variety of evidence is just taking
account of the relevance of evidence to pieces of theory. How Bayesians
may do this we shall consider later.

Simplicity is another feature of scientific method for which some
Bayesians have attempted to account. There is one aspect of the scientifc
preference for the simple that seems beyond Bayesian capacities, and that

is the disdain for de-Occamied' hypotheses, for theories that postulate
the operation of a number of properties, determinable only in combina-
tion, when a single property would do. Such theories can be generated by
taking any ordinary theory and replacing some single quantity, wherever it
occurs in the statement of the theory, by an algebraic combination of new
quantities. If the original quantity was not one that occurs in the statement
of some body of evidence for the theory, then the new, de-Occamied
theory wil have the same entailment relations with that body of evidence
as did the original theory. If the old theory entailed the evidence, so will
the new, de-Occamed one. Now , it follows from Bayesian principles that
if two theories both entail then (provided the prior probability of each
hypothesis is neither 1 nor 0), if confis one of them, it confirms the
other. How then is the fact (for so I take it to be) that pieces of evidence

just don t seem to count for de-Occamized theories to be explained? Not
by supposing that de-Occamied theories have lower prior probabilities
than un-de-Occamied theories, for being 'de-Occamized' is a feature that

a theory has only with respect to a certain body of evidence, and it is not
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hard to imagine artificially restricted bodies of evidence with respect to
which perfectly good theories might count as de-Occamized. Having extra
wheels is a feature a theory has only in relation to a body of evidence; the
only Bayesian relation that appears available and relevant to scientific
preference is the likelihood of the evidence on the theory, and unfortu-
nately the likelihood is the same for a theory and for its de-Occamized
counterparts whenever the theory entails the evidence.

It is common practice in fitting curves to experimental data, in the
absence of an established theory relating the quantities measured, to

choose the 'simplest' curve that wil fit the data. Thus linear relations are
preferred to polynomial relations of higher degree, and exponential func-
tions of measured quantities are preferred to exponential functions of
algebraic combinations of measured quantities , and so on. The problem is
to account for this preference. Harold Jeffreys , a Bayesian of sorts , offered
an explanation (1979) along the following lines. Algebraic and differential
equations may be ordered by simplicity; the simpler the hypothetical rela-
tion between two or more quantities, the greater is its prior probability. If
measurement error has a known probability distribution, we can then
compute the likelihood of any set of measurement results given an equa-
tion relating the measured quantities. It should be clear, then, that with
these priors and likelihoods, ratios of posterior probabilities may be com-
puted from measurement results. Jeffreys constructed a Bayesian signifi- )
cance test for the introduction of higher-degree terms in the equation

relating the measured quantities. Roughly, if one s equation fits the data
too well, then the equation has too many terms and too many arbitrary
parameters; and if the equation does not fit the data well enough, then one
has not included enough terms and parameters in the equation. The whole
business depends, of course, entirely on the ordering of prior probabilities.
In his Theory of Probability Jeffeys (1967) proposed that the prior prob-
ability of a hypothesis decreases as the number of arbitrary parameters
increases, but hypotheses having the same number of arbitrary parameters
have the same prior probability. This leads immediately to the conclusion
that the prior probability of every hypothesis is zero. Earlier, Jeffeys
proposed a slightly more complex assignment of priors that did not suffer
from this difculty. The problem is not really one of fiding a way to assign
finite probabilities to an infite number of incompatible hypotheses, for
there are plenty of ways to do that. The trouble is that it is just very
implausible that scientists typically have their prior degrees of belief dis-
tributed according to any plausible simplicity ordering, and stil less plaus-
ible that they would be rational to do so. I can think of very few simple
relations between experientally determined quantities that have with-

'---'- ----

n_. .--
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stood continued investigation , and often simple relations are replaced by
relations that are infinitely complex: consider the fate of Kepler s laws.

Surely it would be naIve for anyone to suppose that a set of newly
measured quantities wil truly stand in a simple relation, especially in the
absence of a well-confimed theory of the matter. Jeffreys ' strategy re-
quires that we proceed in ignorance of our scientific experience , and that
can hardly be a rational requirement.

Consider another Bayesian attempt , this one due to Mary Hesse. Hesse
puts a 'clustering ' constraint on prior probabilities: for any positive r , the
conjunction of r + 1 positive instances of a hypothesis is more probable
than a conjunction of r positive instances with one negative instance. This
postulate, she claims, wil lead us to choose ceteris paribus the most
economical, the simplest, hypotheses compatible with the evidence. Here
is the argument:

Consider first evidence consisting of individuals aj, az, 

. . .

all of which have
properties and Q. Now consider an individual n+l with property P. Does 

+! 

have
or not? If nothing else is known , the clustering postulate wil direct us to predict

Qa+l since ceteris paribus the universe is to be postulated to be as homogeneous as
possible consistently with the data. . . . But this is also the prediction that would be
made by taking the most economical general law which is both confmed by the
data and of suffcient content to make a prediction about the application of to n+l
For 

= '

All Pare Q' is certainly more economical than the ' gruifed' conflicting
hypothesis of equal content All up to that are and Q, and all other that
are Pare -Q.'

If follows in the (case J considered that if a rule is adopted to choose the prediction
resulting from the most probable hypothesis on grounds of content, or, in case of a
tie in content, the most economical hypothesis on those of equal content, this rule
wil yield the same predictions as the clustering postulate.

Here is the argument applied to curve-fitting:

Let be the assertion that two data points (x" 

), 

(x" y, are obtained from
experiments. . . . The two points are consistent with the hypothesis and
also of course with an indefiite number of other hypotheses of the form ao 

+ . . . + 

a"x, where the values of 

. . . , 

are not determined by (Xl' Yl

), 

(xz, y,
What is the most economical prediction of the y-value of a further point g, where the
x-value of g is Clearly it is the prediction which uses only the information already
contained in f, that is, the calculable values of , b rather than a prediction which
assigns arbitrary values to the parameters of a higher-order hypothesis. Hence the
most economical prediction is about the point g = (X3, a bX3

); 

which is also the
prediction given by the 'simplest' hypothesis on almost all accoUli.s of the simplicity
of curves. Translated into probabilistic language, this is to say that to conform to
intuitions about economy we should assign higher initial probability to the assertion
that points (x" a ), (x" a bxz), (x , a bX3 are satisfied by the experiment than
to that in which the third point is inexpressible in terms of and alone. In this
formulation economy is a function of finite descriptive lists of points rather than
general hypotheses , and the relevant initial probabilty is that of a universe contain-
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ing these particular points rather than that of a universe in which the corresponding
general law is true. . . . Description in terms of a miimum number of parameters
may therefore be regarded as another aspect of homogeneity or clustering of the
universe. (Hesse 1974: 230-2)

Hesse s clusterig postulate applies directly to the curve-fitting case , for
her clustering postulate then requires that if two paired values of and 

satisfy the predicate ax then it is more probable than not that a
third pair of values will satisfy the predicate. So the preference for the
linear hypothesis in the next instance results from Hesse s clustering pos-
tulate and the probability axioms. Unfortunately, with trivial additional
assumptions, everyhing results. For, surely, if bx is a legitimate
predicate , then so is for any definite values of and Now
Hesse s fist two data points can be equally well described by l' a
and (xz, a xD, where

Yl - Yz

XI 
- X

Y1 - Yz1- Z Zl -
Hence her fist two data points satisfy both the predicate bx and the
predicate , by the clustering postulate , the probability that
the third point satisfies the quadratic expression must be greater than one-
half, and the probability that the third point satisfies the liear expression
must also be greater than one-half, which is impossible.

Another Bayesian account of our preference for simple theories has
recently been offered by Roger Rosencrantz (1976). Suppose that we have
some criterion for ' goodness of fit' of a hypothesis to data-for example
confdence regions based on the XZ distribution for categorical data , or in
curve-fitting perhaps that the average sum of squared deviations is less
than some figure. Where the number of possible outcomes is finite , we can
compare the number of such possible outcomes that meet the goodness-of-
fit criterion with the number that do not. Ths ratio Rosencrantz cal1s the
observed sample coverage ' of the hypothesis. Where the possible out-

comes are infnite, if the region of possible outcomes meeting the good-
ness-of-fit criterion is always bounded for all relevant hypotheses, we can
compare the volumes of such regions for diferent hypotheses, and thus
obtain a measure of comparative sample coverage.

It seems plausible enough that the smal1er the observed sample coverage
of a hypothesis, the more severely it is tested by observing outcomes.
Rosencrantz s fist proposal is this: the smal1er the observed sample cover-
age, the simpler the hypothesis. But further, he proves the following for
hypotheses about categorical data: if and Hz are hypotheses with par-
ameters , and is a special case of Hz obtained by letting a free parameter

-_.._- _._-- ---
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in Hz take its maximum likelihood value, then if we average the likelihood
of getting evidence that fits each hypothesis well enough over all the
possible parameter values , the average likelihood of will be greater
than the average likelihood of Hz. The conclusion Rosencrantz suggests is
that the simpler the theory, the greater the average likelihood of data that
fit it suffciently well. Hence, even if a simple theory has a lower prior
probability than more complex theories , because the average likelihood is
higher for the simple theory, its posterior probability will increase more
rapidly than that of more complex theories. When suffcient evidence has
accumulated, the simple theory wil be preferred. Rosencrantz proposes to
identify average likelihood with support.

Rosencrantz s approach has many vitues; I shall concentrate on its
vices. First, observed sampie coverage does not correlate neatly with sim-
plicity. If is a hypothesis another utterly irrelevant to and to the
phenomena about which makes predictions , then wil have the

same observed sample coverage as does H. Further, if H* is a de-

Occamiation of then H* and wil have the same observed sample

coverage. Second, Rosencrantz s theorem does not establish nearly

enough. It does not establish , for example, that in curve-fitting the average
likelihood of a liear hypothesis is greater than the average likelihood of a
quadratic or higher-degree hypothesis. We cannot explicate support in
terms of average likelihood unless we are wiling to allow that evidence
supports a de-Occamized hypothesis as much as un-de-Occamized ones
and a hypothesis with tacked-on parts as much as one without such super-
fluous parts.

Finally, we come to the question of the relevance of evidence to theory.
When does a piece of evidence confi a hypothesis according to the
Bayesian scheme of things? The natural answer is that it does so when the
posterior probability of the hypothesis is greater than its prior probability,
that is, if the conditional probability of the hypothesis on the evidence is
greater than the probabilty of the hypothesis. That is what the condition of
positive relevance requires, and that condition is the one most commonly
advanced by philosophical Bayesians. The picture is a kinematic one: 
Bayesian agent moves along in time having at each moment a coherent set
of degrees of belief; at discrete intervals he learns new facts, and each time
he learns a new fact he revises his degrees of belief by conditionaliing
on e. The discovery that is the case has confied those hypotheses
whose probability after the discovery is higher than their probability be-
fore. For several reasons, I think this account is unsatisfactory; moreover
I doubt that its diffculties are remediable without considerable changes in
the theory.
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The first diffculty is a familiar one. Let us suppose that we can divide the
consequences of a theory into sentences consisting of reports of actual or
possible observations, and simple generalizations of such observations , on
the one hand; and on the other hand, sentences that are theoretical. Then
the collection of 'observational' consequences of the theory wil always be
at least as probable as the theory itself; generally, the theory will be less
probable than its observational consequences. A theory is never any better
established than is the collection of its observational consequences. Why,
then, should we entertain theories at all On the probabilist view , it seems
they are a gratuitous risk. The natural answer is that theories have some
special function that their collection of observational consequences cannot
serve; the function most frequently suggested is explanation-theories
explain; their collection of observational consequences do not. But how-
ever sage this suggestion may be, it only makes more vivid the diffculty of
the Bayesian why of seeing things. For whatever explanatory power may

, we should certainly expect that goodness of explanation wil go hand in
hand with warrant for belief; yet, if theories explain, and their observa-
tional consequences do not, the Bayesian must deny the linkage. The
diffculty has to do both with the assumption that rational degrees of belief
are generated by probability measures and with the Bayesian account of
evidential relevance. Making degrees of belief probability measures in the
Bayesian way already guarantees that a theory can be no more credible
than any collection of its consequences. The Bayesian account of confirma-
tion makes it impossible for a piece of evidence to give us more total
credence in a theory than in its observational consequences. The Bayesian
way of setting things up is a natural one, but it is not inevitable , and
wherever a distinction between theory and evidence is plausible , it leads to
trouble.

A second diffculty has to do with how praise and blame are distributed
among the hypotheses of a theory. Recall the case of Kepler s laws (dis-
cussed in Glymour 1981 , ch. 2). It seems that observations of a single
planet (and, of course , the sun) might provide evidence for or against
Kepler s fist law (all planets move on ellpses) and for or against Kepler
second law (all planets move according to the area rule), but no observa-
tions of a single planet would constitute evidence for or against Kepler
thid law (for any two planets, the ratio of their periods equals the 312 power
of the ratio of their distances). Earlier (in Ch. 2 of Glymour Theory and
Evidence) we saw that hypothetico-deductive accounts of confiation
have great diffculty explaining this elementary judgement. Can the
Bayesians do any better? One thing that Bayesians can say (and some have
said) is that our degrees of belief are distributed-and historically were
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distributed-so that conditionalizing on evidence about one planet may
change our degrees of belief in the fist and second laws, but not our degree
of belief in the third law. I don t see that this is an explanation for our
intuition at all; on the contrary, it seems merely to restate (with some
additional claims) what it is that we want to be explained. Are there any
reasons why people had their degrees of belief so distributed? If their
beliefs had been different , would it have been equally rational for them to
view observations of Mars as a test of the third law, but not of the first? It
seems to me that we never succeed in explaining a widely shared judge-
ment about the relevance or irrelevance of some piece of evidence merely
by asserting that degrees of belief happened to be so distributed as to
generate those judgements according to the Bayesian scheme. Bayesians
may instead try to explain the case by appeal to some structural diference
among the hypotheses; the only gadget that appears to be available is the
likelihood of the evidence about a single planet on various combinations of
hypotheses. If it is supposed that the observations are such that Kepler
fist and second laws entail their description, but Kepler s third law does
not, then it follows that the likelihood of the evidence on the fist and
second laws-that is, the conditional probability of the evidence given
those hypotheses-is unity, but the likelihood of the evidence on the third
law may be less than unity. But any attempt to found an account of the case
on these facts alone is simply an attempt at a hypothetico-deductive ac-
count. The problem is reduced to one already unsolved. What is needed to
provide a genuine Bayesian explanation of the case in question (as well as
of many others that could be adduced) is a general principle restricting
conditional probabilities and having the effect that the distinctions about
the bearng of evidence that have been noted here do result. Presumably,
any such principles will have to make use of relations of content or struc-
ture between evidence and hypothesis. The case does nothing to establish
that no such principles exist; it does, I believe, make it plain that without
them the Bayesian scheme does not explain even very elementary features
of the bearing of evidence on theory.

A third diffculty has to do with Bayesian kinematics. Scientists com-
monly argue for their theories from evidence known long before the
theories were introduced. Copernicus argued for his theory using observa-
tions made over the course of milennia, not on the basis of any starling
new predictions derived from the theory, and presumably it was on the
basis of such arguments that he won the adherence of his early disciples.
Newton argued for universal gravitation using Kepler s second and third

, This is the account suggested by Horwich 1978.
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laws, established before the Principia was published. The argument that
Einstein gave in 1915 for his gravitational field equations was that they
explained the anomalous advance of the perihelion of Mercury, estab-
lished more than half a century earlier. Other physicists found the argu-
ment enormously forceful, and it is a fair conjecture that without it the
British would not have mounted the famous eclipse expedition of 1919.
Old evidence can in fact confi new theory, but according to Bayesian
kinematics, it cannot. For let us suppose that evidence is known before
theory is introduced at time t. Because is known at prob (e) = 1.

Further , because prob (e) = 1 , the likelihood of given prob T), is also
1. We then have

prob (T) x prob T) 
prob , e 

( )

prob
prob

The conditional probability of on is therefore the same as the prior
probabilty of T: e cannot constitute evidence for in virtue of the positive
relevance condition nor in virtue of the likelihood of eon T. None of the
Bayesian mechanisms apply, and if we are strictly limited to them, we have
the absurdity that old evidence cannot confm new theory. The result is
fairly stable. If the probability of is very high but not unity, prob
wil stil be unity if entails and so prob , e) will be very close to
prob (T). How might Bayesians deal with the old evidence/new theory
problem?6 Red herrngs abound. The prior probability of the evidence
Bayesians may object, is not really unity; when the evidence is stated as
measured or observed values, the theory does not really entail that those
exact values obtain; an ideal Bayesian would never suffer the embarrass-
ment of a novel theory. None of these replies wil do: the acceptance of old
evidence may make the degree of belief in it as close to unity as our degree
of belief in some bit of evidence ever is; although the exact measured value
(of, e. , the perihelion advance) may not be entailed by the theory and
known initial conditions, that the value of the measured quantity lies in a
certain interval may very well be entailed, and that is what is believed
anyway; and, fially, it is beside the point that an ideal Bayesian would
never face a novel theory, for the idea of Bayesian confation theory is
to explain scientifc inference and argument by means of the assumption
that good scientists are, about science at least, approxiately ideal

. All of the defences sketched below were suggested to me by one or another philosopher
sympathetic to the Bayesian view; I have not attributed the arguments to anyone for fear of
misrepresenting them. None the less, I thank Jon Dorling, Paul Teller, Daniel Garber, Ian
Hacking, Patrck Suppes, Richard Jeffey, and Roger Rosencrantz for valuable discussions and
correspondence on the point at issue.
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Bayesians, and we have before us a feature of scientific argument that
seems incompatible with that assumption.

A natural line of defence lies through the introduction of counterfactual
degrees of belief. When using Bayes s rule to determine the posterior

probability of a new theory on old evidence, one ought not to use one
actual degree of belief in the old evidence , which is unity or nearly so; one
ought instead to use the degree of belief one would have had in if. . . . The
problem is to fi in the blanks in such a way that it is both plausible that we
have the needed counterfactual degrees of belief, and that they do serve to
determne how old evidence bears on new theory. I tend to doubt that
there is such a completion. We cannot merely throw and whatever entails

out of the body of accepted beliefs; we need some rule for determning a
counterfactual degree of belief in and a counterfactuallikelihood of 

T. To simpli, let us suppose that does logically entail so that the

likelihood is fied.

If one flips a coin three times and it turns up heads twice and tails once
in using this evidence to confi hypotheses (e.g. of the fairess of the
coin), one does not take the probability of two heads and one tail to be
what it is after the flpping-namely, unity-but what it was before the
flpping. In this case there is an immediate and natural counterfactual
degree of belief that is used in conditionalizing by Bayes s rule. The
trouble with the scientific cases is that no such imediate and natural
alternative distribution of degree of belief is available. Consider someone
trying, in a Bayesian way, to determine in 1915 how much Einstein
derivation of the perihelion advance confmed general relativity. There is
no single event, like the coin flipping, that makes the perihelion anoma
virtually certain. Rather, Leverrier fist computed the anomaly in the
middle of the nineteenth century; Simon Newcomb calculated it again
around 1890, using Leverrier s method but new values for planetary
masses, and obtained a substantially higher value than had Leverrer. Both
Newcomb and Leverrier had, in their calculations, approximated an infi-
nite series by its first terms without any proof of convergence , thus leaving
open the possibility that the entire anomaly was the result of a mathemati-
cal error. In 1912 Eric Doolittle calculated the anomaly by a wholly differ-
ent method, free of any such assumption, and obtained virtually the same
value as had Newcomb.7 For actual historical cases, unlike the coin-flipping
case, there is no single counterfactual degree of belief in the evidence
ready to hand, for belief in the evidence sentence may have grown gradu-
ally-in some cases , it may have even waxed , waned , and waxed again. So

7 The actual history is stil more complicated. Newcomb and Doolittle obtained values for the
anomaly differing by about 2 seconds of arc per century. Early in the 19208. Grossman
discovered that Newcomb had made an error in calculation of about that magnitude.
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the old evidence/new theory problem cannot be assimilated to coin
flpping.

The suggestion that what is required is a counterfactual degree of belief
is tempting, none the less; but there are other problems with it besides the
absence of any unique historical degree of belief. A chief one is that
various ways of manufacturing counterfactual degrees of belief in the
evidence threaten us with incoherence. One suggestion, for example , is the
following, used implicitly by some Bayesian writers. At about the time Tis
introduced, there wil be a number of alternative competing theories avail-
able; call them , Tz, 

. . . , 

and suppose that they are mutually exclusive
of and of each other. Then Pee) is equal to

P(T ) P(e , T )+ 1'(1;) P(e 1;)+... + P(T ) p(e , T

+P(~(T V... )p(e , Tl v...

)),

and we may try to use this formula to evaluate the counterfactual degree of
belief in e. The problem is with the last term. Of course , one could suggest
that this term just be ignored when evaluating P( e), but it is difcult to see
within a Bayesian framework any rationale at all for doing so. For if one
does ignore this term, then the collection of prior probabilities used to
evaluate the posterior probability of wil not be coherent unless either
the likelihood of on is zero or the prior probability of is zero. One
could remedy this objection by replacing the last term by

P(T)P(e , T),

but this will not do either, for if one s degree of belief in

P(T v1; v... vT)

is not unity, then the set of prior degrees of belief will stil be incoherent.
Moreover, not only wil it be the case that if the actual degree of belief in
is replaced by a counterfactual degree of belief in according to either of

these proposals, then the resulting set of priors wil be incoherent, it will
further be the case that if we conditionalie on the resulting conditional
probabilties will be incoherent. For example, if we simply delete the last
term, one readily calculates that

P(T v... P(T v... )P(e, T v... 

P(e 1; v... )P(TI v...
and further that

P(T)P(e, T)

P(e , T v... )P(T v...
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But because is supposed inconsistent with Tl v... V Tk and peT, e) is not

zero, this is incoherent.
Let us return to the proposal that when new theory confronts old evi-

dence, we should look backwards to the time when the old evidence had
not yet been established and use for the prior probability of whatever
degree of belief we would have had at that time. We cannot just stick in
such a counterfactual value for the prior probability of and change

nothing else without, as before , often making both prior and con-
ditionalized probabilties incoherent. If we give all of our sentences the
degree of belief they would have had in the relevant historical period
(supposing we somehow know what period that is) and then conditionalize
on incoherence presumably will not arise; but it is not at all clear how to
combine the resulting completely counterfactual conditional probabilities
with our actual degrees of belief. It does seem to me that the following
rather elaborate procedure wil work when a new theory is introduced.
Starting with your actual degree of belief function consider the degree
of belief you would have had in in the relevanfhistorical period , call it
H(e). Now change by regarding H(e) as an arbitrary change in degree of
belief in and using Richard Jeffrey s (1965) rule,

p'(S) H(e)P(S , e)+(l- H(e))P(S, ~ e).

Jeffrey s rule guarantees that P' is a probability function. Finally, cop-

ditionalize on 

(S) p'(S , e),

and let P" be your new actual degree of belief function. (Alternatively, P"
can be formed by using Jeffrey s rule a second time.

There remain a number of objections to the historical proposal. It is not
obvious that there are, for each of us, degrees of belief we personally
would have had in some historical period. It is not at all clear which

historical period is the relevant one. Suppose , for example, that the gravi-
tational deflection of sunlight had been determined experimentally around
1900, well before the introduction of general relativity,S In trying to assess

the confiation of general relativity, how far back in time should a twen-

8 Around 190 is fanciful, before general relativity is not. In 1914 E. Freundlich mounted an
expedition to Russia to photograph the eclipse of that year in order to determne the gravita-
tional deflection of starlight. At that time, Einstein had predicted an angular deflection for light
passing near the limb of the sun that was equal in value to that derived from Newtonian
principles by Soldner in 1801. Einstein did not obtain the field equations that imply a value for
the deflection equal to twice the Newtonian value until late in 1915. Freundlich was caught in
Russia by the outbreak of World War I, and was interned there. Measurement of the deflection
had to wait until 1919.
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tieth-century physicist go under this supposition? If only to the nineteenth
then if he would have shared the theoretical prejudices of the period,
gravitational deflection of light would have seemed quite probable. Where
ought he to stop, and why? But laying aside these difficulties, it is implaus-
ible indeed that such a historical Bayesianism, however intriguing a
proposal, is an accurate account of the principles by which scientific judge-
ments of confirmation are made. For if it were, then we should have to
condemn a great mass of scientific judgements on the grounds that those
making them had not studied the history of science with suffcient close-
ness to make a judgement as to what their degrees of belief would have
been in relevant historical periods. Combined with the delicacy that is
required to make counterfactual degrees of belief fit coherently with actual
ones, these considerations make me doubt that we should look to
counterfactual degrees of belief for a plausible Bayesian account of how
old evidence bears on new theory.

Finally, consider a quite different Bayesian response to the old evidence/
new theory problem. Whereas the ideal Bayesian agent is a perfect
logician, none of us are , and there are always consequences of our hypoth-
eses that we do not know to be consequences. In the situation in which
old evidence is taken to confirm a new theory, it may be argued that there
is something new that is learned, and typically, what is learned is that the
old evidence is entailed by the new theory. Some old anomalous result is
lying about, and it is not this old result that confis a new theory, but
rather the new discovery that the new theory entails (and thus explains)
the old anomaly. If we suppose that semi-rational agents have degrees
of belief about the entailment relations among sentences in their language
and that

P(hl-e)=l implies P(e, h)=l
this makes a certain amount of sense. We imagine the semi-rational
Bayesian changing his degree of belief in hypothesis in light of his new
discovery that entails by moving from his prior degree of belief inh 

his conditional degree of belief in given that that 1- and whatever
background beliefs there may be. Old evidence can, in this vicarious way,
confi a new theory, then, provided that

P(h, b&e&(h 
1- 

e)) P(h, b&e).

Now, in a sense, I believe this solution to the old evidence/new theory
problem to be the correct one; what matters is the discovery of a certain
logical or structural connection between a piece of evidence and a piece of
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theory, and it is in virtue of that connection that the evidence , if believed
to be true, is thought to be evidence for the bit of theory. What I do not
believe is that the relation that matters is simply the entailment relation
between the theory, on the one hand, and the evidence , on the other. The
reasons that the relation cannot be simply that of entailment are exactly
the reasons why the hypothetico-deductive account (see Glymour 1981 , ch.
2) is inaccurate; but the suggestion is at least correct in sensing that our
judgement of the relevance of evidence to theory depends on the percep-
tion of a structural connection between the two , and that degree of belief

, at best , epiphenomenal. In the determination of the bearing of evidence
on theory, there seem to be mechanisms and stratagems that have no
apparent connection with degrees of belief, which are shared alike by
people advocating different theories. Save for the most radical innova-
tions, scientists seem to be in close agreement regarding what would or
would not be evidence relevant to a novel theory; claims as to the rel-
evance to some hypothesis of some observation or experiment are fre-
quently buttressed by detailed calculations and arguments. All of these
features of the determination of evidential relevance suggest that that
relation depends somehow on structural, objective features connecting
statements of evidence and statements of theory. But if that is correct
what is really important and really interesting is what these structural
features may be. The condition of positive relevance, even if it were
correct, would simply be the least interesting part of what makes evidence
relevant to theory.

None of these arguments is decisive against the Bayesian scheme of
things, nor should they be; for in important respects that scheme is un-
doubtedly correct. But taken together, I think they do at least strongly
suggest that there must be relations between evidence and hypotheses that
are important to scientific argument and to confirmation but to which the
Bayesian scheme has not yet penetrated.
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