CHAPTER 3

46656 Varieties
of Bayesians (#765)

Some attacks and defenses of the Bayesian.position assume that it is unigue so it
should be helpful to point out that there are at least 46656 different interpreta-
tions. This is shown by the following classification based on eleven facets. The
count would be larger if | had notartificially made some of the facets discrete and
my heading would have been ““On the Infinite Variety of Bayesians."”

All Bayesians, as | understand the term, believe that it is usually meaningful to
talk about the probability of a hypothesis and they make some attempt to be con-
sistent in their judgments. Thus von Mises (1942) would not count as a Bayesian,
on this definition. For he considered that Bayes’s theorem is applicable only when
the prior is itself a physical probability distribution based on a large sample from
a superpopulation. If he is counted as a Bayesian, then there are at least 46657
varicties, which happens to rhyme with the number of Heinz varieties. But no
doubt both numbers will increase on a recount.

Here are the eleven facets:

1. Type Il rationality. (a) Consciously recognized;’(b) not. Here Type Il ration-
ality is defined as the recommendation to maximize expected utility allowing for
the cost of theorizing (#290). It involves the recognition that judgments can be
revised, leading at best to consistency of mature judgments.

2. Kinds of judgments. (a) Restricted to a specific class or classes, such as
preferences between actions; {b) all kinds permitted, such as of probabilities and
utilities, and any functions of them such asexpected utilities, weights of evidence,
likelihoods, and surprise indices (#82; Good, 1954). This facet could of course
be broken up into a large number.

3. Precision of judgments. (a) Sharp; (b) based on inequalities, i.e. partially
ordered, but sharp judgments often assumed for the sake of simplicity (in accor-
danre with 1{al)
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4. Extremeness. (a) Formal Bayesian procedure recommended for all applica-
tions; (b) non-Bayesian methods used provided that some set of axioms of intui-
tive probability are not seen to be contradicted (the Bayes/non-Bayes compromise:
Hegel and Marx would call it a synthesis); (c) non-Bayesian methods used only
after they have been given a rough Bayesian justification.

5. Utilities. (a) Brought in from the start; (b) avoided, as by H. Jeffreys;
{c) utilities introduced separately from intuitive probabilities.

6. Quasiutilities. (a) Only one kind of utility recognized; (b) explicit recog-
nition that “quasiutilities” (##690A, 755) are worth using, such as amounts of
information or “‘weights of evidence” (Peirce, 1978 [but see #1382]; #13): (c)
using quasiutilities without noticing that they are substitutes for utilities. The
use of quasiutilities is as old as the words “information’’ and “evidence,” but |
think the name “quasiutility " serves a useful purpose in focussing the issue.

7. Physical probabilities. (a) Assumed to exist; (b) denied; (c) used as if they
exist but without philosophical commitment (#617).

8. Intuitive probability . (a) Subjective probabilities regarded as primary; (b)
credibilities (logical probabilities) primary; (c) regarding it as mentally healthy to
think of subjective probabilities as estimates of credibilities, without being sure
that credibilities really exist; (d) credibilities in principle definable by an inter-
national body. . . .

9. Device of imaginary results. (a) Explicit use; (b) not. The device involves
imaginary experimental results used for judging final or posterior probabilities
from which are inferred discernments about the initial probabilities. For examples
see ##13, 547.

10. Axioms. (a) As simple as possible; (b) incorporating Kolmogorov’s axiom
(complete additivity); (c) using Kolmogorov’s axiom when mathematically con-
venient but regarding it as barely relevant to the philosophy of applied statistics.

11. Probability “types.” (a) Considering that priors can have parameters with
“Type HI” distributions, as a convenient technique for making judgments; (b)
not. Here (a) leads, by a compromise with non-Bayesian statistics, to such tech-
niques as Type |l maximum likelihood and Type 11 likelihood-ratio tests (#547).

Thus there are at least 2* - 3¢ - 4 = 46656 categories. This is more than the
number of professional statisticians so some of the categories must be empty.
Thomas Bayes hardly wrote enough to be properly categorized; a partial attempt
is b--aaa?-b-. My own category is abcbcbcecaca. What's yours?



CHAPTER 4

The Bayesian Influence,
or How to Sweep Subjectivism
under the Carpet (#838)

ABSTRACT

On several previous occasions | have argued the need for a Bayes/non-Bayes
compromise which | regard as an application of the “Type " principle of ration-
ality. By this is meant the maximization of expected utility when the labour and
costs of the calculations are taken into account, Building on this theme, the pres-
ent work indicates how some apparently objective statistical techniques emerge
logically from subjective soil, and can be further improved if their subjective
fogical origins (if not always histérical origins) are not ignored. There should in
my opinion be a constant interplay between the subjective and objective points
of view, and not a polarization separating them.

Among the topics discussed are, two types of rationality, 27 *Priggish Prin-
ciples,” 46656 varieties of Bayesians, the Black Box theory, consistency, the un-
obviousness of the obvious, probabilities of events that have never occurred
(namely all events), the Device of Imaginary Results, graphing the likelihoods,
the hierarchy of types of probability, Type Il maximum likelihood and likelihood
ratio, the statistician's utilities versus the client’s, the experimenter’s intentions,
quasiutifities, tail-area probabilities, what is “‘more extreme’'?, “deciding in ad-
vance,” the harmonic mean rule of thumb for significance tests in parallel, den-
sity estimation and roughness penalities, evolving probability and pseudorandom
numbers and a connection with statistical mechanics.

1. PREFACE

. There is one respect in which the title of this paper is deliberately ambig-
uous: it is not clear whether it refers to the historical or to the Jogical influence
of “Bayesian” arguments. In fact it refers to both, but with more emphasis on
the logical influence. Logical aspects are more fundamental to a science or phil-
osophy than are the historical ones, although they each shed light on the other.
The logical development is a candidate for being the historical development on

nnnthor nlanat
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I have taken the expression the “Bayesian influence’ from a series of lectures
in mimeographed form {#750). In a way | am fighting a battle that has already
been won to a large extent. For example, the excellent statisticians L. ]. Savage,
D. V. Lindley, G. E. P. Box (R. A. Fisher’s son-in-law) and J. Cornfield were
converted to the Bayesian fold years ago. For some years after World War {1,
| stood almost alone at meetings of the Royal Statistical Society in crusading
for a Bayesian point of view. Many of the discussions are reported in the fournal,
series B, but the most detailed and sometimes heated ones were held privately
after the formal meetings in dinners at Berterolli’s restaurant and elsewhere,
especially with Anscombe, Barnard, Bartlett, Daniels, and Lindley. [Lindley
was a non-Bayesian until 1954.] These protracted discussions were historically
important but have never been mentioned in print before as far as | know. There
is an unjustifiable convention in the writing of the history of science that science
communication occurs only through the printed word. . . .

Il INTRODUCTION

On many previous occasions, and especially at the Waterloo conference of 1970,
| have argued the desirability of a Bayes/non-Bayes compromise which, from one
Bayesian point of view, can be regarded as the use of a “Type II'" principle of
rationality. By this is meant the maximization of expected utility when the labour
and costs of calculations and thinking are taken into account. Building on this
theme, the present paper will indicate how some apparently objective statistical
techniques emerge logically from subjective soil, and can be further improved by
taking into account their logical, if not always historical, subjective origins. Therc
should be in my opinion a constant interplay between the subjective and objec-
tive points of view and not a polarization separating them.

Sometimes an orthodox statistician will say of one of his techniques that it
has “intuitive appeal.”’ This is | believe always a guarded way of saying that it
has an informal approximate Bayesian justification,

Partly as a matter of faith, I believe that a// sensible statistical procedures can
be derived as approximations to Bayesian procedures. As | have said on previous
occasions, ‘“To the Bayesian all things are Bayesian.”

Cookbook statisticians, taught by non-Bayesians, sometimes give the impres-
sion to their students that cookbooks are enough for all practical purposes. Any
one who has been concerned with complex data analysis knows that they are
wrong: that subjective judgment of probabilities cannot usually be avoided, even
if this judgment can later be used for constructing apparently non-Bayesian pro-
cedures in the approved sweeping-under-the-carpet manner.

(a) What Is Swept under the Carpet?

I shall refer to “‘sweeping under the carpet’ several times, so | shall use the
abbreviations UTC and SUTC. One part of this paper deals with what is swept
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under the carpet, and another part contains some examples of the SUTC process.
(The past tense, etc., will be covered by the same abbreviation.)

LLet us then consider what it is that is swept under the carpet. Maurice Bartlett
once remarked, in a discussion at a Research Section meeting of the Royal Statis-
tical Society, that the word ‘““Bayesian’ is ambiguous, that there are many varie-
ties of Bayesians, and he mentioned for example, ‘‘Savage Bayesians and Good
Bayesians,” and in a letter in the American Statistician | classified 46656 varie-
ties (#765). There are perhaps not that number of practicing Bayesian statisti-
cians, but the number comes to 46656 when your cross-classify the Bayesians
in a specific manner by eleven facets. Some of the categories are perhaps logical-
ly empty but the point | was making was that there is a large variety of possible
interpretations and some of the arguments that one hears against the Bayesian
position are valid only against some Bayesian positions. As so often in contro-
versies ‘it depends what you mean.” The particular form of Bayesian position
that 1 adopt might be called non-Bayesian by some people and naturally it is my
own views that | would like most to discuss. | speak for some of the Bayesians
all the time and for all the Bayesians some of the time. In the spoken version
of this paper | named my position after “the Tibetan LLama K. Caj Doog,” and
| called my position “‘Doogian.” Although the joke wears thin, it is convenient
to have a name for this viewpoint, but “‘Bayesian” is misleading, and ‘‘Goodian”
or “‘Good” is absurd, so | shall continue with the joke even in print. (See also
Smith, 1961, p. 18, line minus 15, word minus 2.)

Doogianism is mainfy a mixture of the views of a,few of my eminent pre-1940
predecessors. Many parts of it are therefore not original, but, taken as a whole
I think it has some originality; and at any rate it is convenient here to have a
name for it. It is intended to be a general philosophy for reasoning and for
rationality in action and not just for statistics. It is a philosophy. that applies to
all activity, to statistics, to economics, to the practice and philosophy of science,
to ordinary behavior, and, for example, to chess-playing. Of course each of these
fields of study or activity has its own specialized problems, but, just as the the-
ories of each of them should be consistent with ordinary logic, they should in
my opinion be consistent also with the theory of rationality as presented here
and in my previous publications, a theory that is a useful and practically necessary
extension of ordinary logic. . . .

At the Waterloo conference (#679), | listed 27 Priggish Principles that sum-
marize the Doogian philosophy, and perhaps the reader will consult the Pro-
ceedings and some of its bibliography for a more complete picture, and for his-
torical information. Here it would take too long to work systematically through
all 27 principles and instead | shall concentrate on the eleven facets of the Bayes-
ian Varieties in the hope that this will give a fairly clear picture. | do not claim
that any of these principles were “discovered last week'’ (to quote Oscar Kemp-
thorne’s off-the-cuff contribution to the spoken discussion), in fact | have de-
veloped, acquired or published them over a period of decades, and most of them
were used by others before 1940, in one form or another, and with various
degrees of bakedness or emphasis. The main merit that | claim for the Doogian
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philosophy is that it codifies and exemplifies an adequately complete and simple
th'eory of rationality, complete in the sense that it is | believe not subject to the
criticisms that are usually directed at other forms of Bayesianism, and simple in
the sense that it attains realism with the minimum of machinery. To pun some-
what, it is “minimal sufficient.”

(b) Rationality, Probability, and the Black Box Theory

In some philosophies of rationality, a rational man is defined as one whose
judgments of probabilities, utilities, and of functions of these, are all both con-
sistent and sharp or precise. Rational men do not exist, but the concept is use-
ful in the same way as the concept of a reasonable man in legal theory. A ration-
al man can be regarded as an ideal to hold in mind when we ourselves wish to be
rational, |t is sometimes objected that rationality as defined here depends on
betting behavior, and people sometimes claim they do not bet. But since their
every decision is a bet | regard this objection as unsound: besides they could in
principle be forced to bet in the usual monetary sense. It seems absurd to me to
suppose that the rationa/ judgment of probabilities would normally depend on
whether you were forced to bet rather than betting by free choice.

There are of course people who argue (rationally?) against rationality, but
presumably they would agree that it is sometimes desirable. For example, they
would usually prefer that their doctor should make rational decisions, and,'when
they were fighting a legal case in which they were sure that the evidence “proved”
their case, they would presumably want the judge to be rational. 1 believe that
the dislike of rationality is often merely a dishonest way of maintaining an in-
defensible position, Irrationality isintellectual violence against which the pacifism
of rationality may or may not be an adequate weapon,

»ln practice one’s judgments are not sharp, so that to use the most familiar
axioms it is necessary to work with judgments of inequalities, For example,
these might be judgments of inequalities between probabilities, between utilities
expected utilities, weights of evidence (in a sense to be defined . . .), or an):
other convenient function of probabilities and utifities. We thus arr;ve at a
theory that can be regarded as a combination of the theories espoused by
F. P. Ramsey (1926/31/50/64), who produced a theory of precise subjective
probability and utility, and of f. M. Keynes (1921), who emphasized the impor-
tance of inequalities (partial ordering) but regarded logical probability or cred-
ibility as the fundamental concept, at least until he wrote his obituary on Ramsey
(Keynes, 1933).

To summarize then, the theory | have adopted since about 1938 is a theory
of subjective (personal) probability and utility in which the judgments take the
form of inequalities (but see Section 1]1 [iii] below). This theory can be formu-
lated as the following “‘black box’’ theory. . . .[See pp. 75-76.]

To extend this theory to rationality, we need merely to allow judgments
of preferences also, and to append the “principle of rationality,” the recom-
mendation to maximize expected utility. (##13, 26, 230.) ,
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physical probabilities corresponding to the cells of multidimensional contingency
tables. Many cells will be empty for say a 22° table. A Bayesian proposal for this
problem was made in Good (p. #75 of #398),-and | am hoping to get a student
to look into it; and to compare it with the use of log-linear models which have
been applied to this problem during the last few years. One example of the use
of a log-linear model is, after taking logarithms of the relative frequencies, to ap-
ply-a method of smoothing mentioned in #146 in relation to factorial experi-
ments: namely to treat non-significant interactions as zero (or of course they
could be “‘flattened” Bayesianwise instead for slightly greater accuracy).

Yet another problem where the probabilities of events that have never oc-
curred before are of interest is the species sampling problem. One of its aspects
is the estimation of the probability that the next animal er word sampled will be
one that has not previously occurred, The answer turns out to be approximately
equal to 11, /N, where n, is the number of species that have so far occurred just
once, and N is the total sample size: see ##38 & 86; this work was originated
with an idea of Turing’s (1940) which anticipated the empirical Bayes method
in a special case. (See also Robbins, 1968.) The method can be regarded ds non-
Bayesian but with a Bayesian influence underlying it. More generally, the prob-
ability that the next animal will be one that has so far been represented r times is
approximately (r + 1)n,. /N, where n, is the “frequency of the frequency r,”
that is, the number of species each of which has already been represented r times.
(In practice it is necessary to smooth the n,'s when applying this formula, to get
adequate results, when r>1.) | shall here give a new proof of this result. Denote
the event of obtaining such an animal by £,. Since the order in which the N ani-
mals were sampled is assumed to be irrelevant (a Bayesian-type assumption of
permutability), the required probability can be estimated by the probability that
£, would have occurred on the fast occasion an animal was sampled if a random
permutation were applied to the order in which the N animals were sampled. But
£, would have occurred if the last animal had belonged to a species represented
r + 1 times afltogether. This gives the result, except that for greater accuracy we
should remember that we are talking about the (N +1)st trial, so that a more ac-
curate result is (r + 1)&y+1 (n,+1)/(N + 1). Hence the expected physical prob-
ability g, corresponding to those n, species that have so far occured r times
is
r+1 &y (1)

&lgr) = .
N+1  &nln,)

This is formula (15) of #38 which was obtained by a more Bayesian argument.
The “variance’ of g, was also derived in that paper, and a “‘frequency’’ proof of
it would be more difficult. There is an interplay here between Bayesian and
frequency ideas.

One aspect of Doogianism which dates back at least to F. P. Ramsey {1926/
31/50/64) is the emphasis on consistency: for example, the axioms of probability
can provide only relationships between probabilities and cannot manufacture a
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Fisher’s fiducial argument. (This assumption is pinpointed in #659 on its p. 139
omitted herein. The reason Fisher overlooked this is also explained there.)

The idea of consistency seems weak enough, but it has the following immed-
jate consequence which /s often overlooked.

Owing to the adjectives “initial” and “final'’ or “prior’" and “posterior,” it is
usually assumed that initial probabilities must be assumed before final ones can
be calculated. But there is nothing in the theory to prevent the implication he-
ing in the reverse dircction: we can make judgments of initial probabilities and
infer final ones, or we can equally make judgments of final ones and infer initial
ones by Bayes’s theorem in reverse. Moreover this can be done corresponding to
entirely imaginary obscrvations. This is what | mean by the Device of Imaginary
Results for the judging of initial probabilities. (See, for example, Index of #13),
I found this device extremely useful in connection with the choice of a prior
for multinomial estimation and significance problems (#547) and | believe the
device will be found to be of the utmost value in future Bayesian statistics,
Hypothetical experiments have been familiar for a long time in physics, and in
the arguments that led Ramsey to the axioms of subjective probability, but the
use of Bayes's theorem in reverse is less familiar. ““Ye priors shall be known by
their posteriors’ (p. 17). Even the slightly more obvious technique of imag-
inary bets is still disdained by many decision makers who like to say “‘That pos-

sibility is purely hypothetical.” Anyone who disdains the hypothetical is a
philistine.

IIl. THE ELEVENFOLD PATH OF DOOGIANISM

As ' said before, | should now like to take up the 46656 varieties of Bayesians,
in other words the cleven facets for their categorization. | would have discussed
the 27-fold path of Doogianism if there had been space enough.

(i) Rationality of Types | and {1

I have already referred to the first facet. Rationality of Type | is the recom-
mendation to maximize cxpected utility, and Type 1l is the same except that it
ows for the cost of theorizing. It means that in any practical situation you
have to decide when to stop thinking. You can’t allow the current to g0 on cir-
culating round and round the black box or the cranium forever. You would like
to reach a sufficient maturity of judgments, but you have eventually to reach
some conclusion or to make some decision and so you must be prepared to sac-
rifice strict logical consistency. At best you can achieve consistency as far as
you have scen to date (p. 49 of #13). There is a time element, as in chess, and
this is realistic of most practice. It might not appeal to some of you who love
ordinary logic, but it is a mirror of the true situation.
It may help to convince some readers if | recalt a remark of Poincaré’s that
some antinomies in ordinary (non-probabilistic) logic can be resolved by bring-
ing in a time element. {“Temporal,” “evolving” or “dvnamic’’ lnaic?1
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controversies between the orthodox and Bayesian points of view, also involves a
shifting of your probabilities. The subjective probabilities shift as a consequence
of thinking. . . . {See p. 107.] The conscious recognition of Type Il ration-
ality, or not, constitutes the two aspects of the first facet.

Another name for the principle of Type Il rationality might be the Principle
of Non-dogmatism.

(i) Kinds of Judgment

tnequalities between probabilities and between expected utilities are perhaps
the most standard type of judgment, but other kinds are possible. Because of my
respect for the human mind, | believe that one should allow any kind of judg-
ments that are relevant. One kind that | believe will ultimately be regarded as
vying in importance with the two just mentioned is a judgment of "“weights of
evidence’' (defined later) a term introduced by Charles Sanders Peirce (1878)
although 1 did not know this when | wrote my 1950 book. . . .

It will encourage a revival of reasoning if statisticians adopt this appealing
terminology . . .. [But Peirce blew it. See #1382.]

One implication of the “‘suggestion” that all types of judgments can be used is
to encourage you to compare your “‘overall” judgments with your detailed ones;
for example, a judgment by a doctor that it is better to operate than to apply
medical treatment, on the grounds perhaps that this would be standard practice
in the given circumstances, can be “played off” against separate judgments of
the probabilities and utilities of the outcomes of the various treatments.

(iii) Precision of judgments

Most theories of subjective probability deal with numerically precise proba-
bilities. These would be entirely appropriate if you could always state the lowest
odds that you would be prepared to accept in a gamble, but in practice there is
usually a degree of vagueness. Hence | assume that subjective probabilities are
only partially ordered. In this | follow Keynes and Koopman, for example, ex-
cept that Keynes dealt primarily with logical probabilities, and Koopman with
“intuitive’” ones {which means either logical of subjective). F. P. Ramsey {1926/
31/50/64) dealt with subjective probabilities, but “‘sharp’ ones, as mentioned
before.

A theory of “partial ordering” (inequality judgments) for probabilities is a
compromise between Bayesian and non-Bayesian ideas. For if a probability is
judged merely to lie between 0 and 1, this is equivalent to making no judg-
ment about it at all. The vaguer the probabilities the closer is this Bayesian
viewpoint to a non-Bayesian one.

Often, in the interests of simplicity, | assume sharp probabilities, as an ap-
proximation, in accordance with Type [l rationality.
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(iv) Eclecticism

Many Bayesians take the extreme point of view that Bayesian methods should
always be used in statistics. My view is that non-Bayesian methods are acceptable
provided that they are not seen to contradict your honest judgments, when com-
bined with the axioms of rationality. This facet number (iv) is an application of
Type |l rationality. | believe it is sometimes, but not by any means always, easier
to use “orthodox” (non-Bayesian) methods, and that they are often good enough.
It is always an application of Type Il rationality to say that a method is good
enough.

(v) Should Utilities Be Brought in from the Start in the Development
of the Theory?

| have already stated my preference for trying to build up the theory of sub-
jective probability without reference to utilities and to bring in utilities later.
The way the axioms are introduced is not of great practical importance, provided
that the same axioms are reached in the end, but it is of philosophical interest.
Also there is practical interest in seeing how far one can go without making use
of utilities, because one might wish to be an “armchair philosopher” or ‘“fun
scientist” who is more concerned with discovering facts about Nature than in
applying them. (“Fun scientist” is not intended to be a derogatory expression.)
Thus, for example, R. A. Fisher and Harold Jeffreys never used ordinary util-
ities in their statistical work as far as | know (and when Jeffreys chaired the
meeting in Cambridge when | presented my paper #26 he stated that he had
never been concerned with economic problems in his work on probability).
See also the following remarks concerned with quasiutilities.

(vi) Quasiutilities

Just as some schools of Bayesians regard subjective probabilities as having
sharp (precise) values, some assume that utilities are also sharp. The Doogian
believes that this is often not so. It is not merely that utility inequality judg-
ments of course vary from one person to another, but that utilities for indiv-
iduals can also often be judged by them only to lie in wide intervals, It con-
sequently becomes useful and convenient to make use of substitutes for utility
which may be called guasiutilities or pseudoutilities. Examples and applications
of quasiutilities will be considered later in this paper. The conscious recognition
or otherwise of quasiutilities constitutes the sixth facet.

(vii} Physical Probability

Different Bayesians have different attitudes to the question of physical
probability. de Finetti regards it as a concept that can be defined in terms of
subjective probability, and does not attribute any other ‘real existence’ to it.
My view, or that of my alter ego, is that it seems reasonable to suppose that
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physical probabilities do exist, but that they can be measured only be means of
a theory of subjective probability. For a fuller discussion of this point see de
Finetti (1968/70) and #617. The question of the real existence of physical
probabilities relates to the problem of determinism versus indeterminism and 1
shall have something more to say on this. .

When [ refer to physical probability | do not assume the long-run frequency
definition: physical probability can be applied just as well to unique circum-
stances. Popper suggested the word “‘propensity’’ for it, which | think is a good
term, although | think the suggestion of a word cannot by itself be regarded as
the propounding of a “theory.” [See also p. 405 of Feibleman, 1969.] As | have
indicated before, | think good terminology is important in crystallizing out
ideas. Language can easily mislead, but part of the philosopher’s job is to find
out where it can /ead. Curiously enough Popper has also stated that the words
you use do not matter much: what is important is what they mean in your
context. Fair enough, but it can lead to Humpty-Dumpty-ism, such as Popper’s
interpretation of simplicity [or Carnap’s usage of ‘‘confirmation’’ which has mis-
led philosophers for decades).

(viii) Which is Primary, Logical Probability (Credibility) or Subjec-
tive Probability?

It seems to me that subjective probabilities are primary because they are the
ones you have to use whether you like it or not. But I think it is mentally heal-
thy to think of your subjective probabilities as estimates of credibilities, whether
these really “exist’” or not. Harold Jeffreys said that the credibilities should be
laid down by an international body. He would undoubtedly be the chairman. As
Henry Daniels once said (c. 1952) when | was arguing for subjectivism, “‘all stat-
isticians would tike their models 1o be adopted,” meaning that in some sense
everybody is a subjectivist,

(ix) Imaginary Results

This matter has already been discussed but | am mentioning it again because
it distinguishes between some Bayesians in practice, and so forms part of the
categorization under discussion. 1 shall give an example of it now because this
will help to shed light on the tenth facet.

It is necessary to introduce some notation. Let us suppose that we throw a
sample of N things into ¢ pigeon holes, with statisticaily independent physical
probabilities py, P4, . . . , Py, these being unknown, and that you obtain fre-
quencies ny, Ny, . . ., n; in the ¢ categories or cells. This is a situation that
has much interested philosophers of induction, but for some reason, presumably
lack of familiarity, they do not usually call it multinomial sampling. In common
with many people in the past, | was interested (##398, 547) in estimating the
physical probabilities p(, pa, . . ., Ps. . . . [See pp. 100-103.]

That then is an example of a philosophical attitude leading to a practical sol-
ution of a statistical problem. As a matter of fact, it wasn't just the estimation
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of the p's that emerged from that work, but, more important, a significance test
for whether the p's were all equal. The method has the pragmatic advantage that
it can be used for all sample sizes, whereas the ordinary chi-squared test breaks
down when the cell averages are less then 1. Once you have decided on a prior
(the initial relative probabilities of the components of the non-null hypothesis),
you can calculate the weight of evidence against the null hypothesis without
using asymptotic theory. (This would be true for any prior that is a linear com-
bination of Dirichlet distributions, even if they were not symmetric, because in
this case the calculations involve only one-dimensional integrations.) That then
was an example of the device of imaginary results, for the selection of a prior,
worked out in detail.

The successful use of the device of imaginary results for this problem makes it
obvious that it can and will also be used effectively for many other statistical
problems. | believe it will revolutionize multivariate Bayesian statistics.

(x) Hierarchies of Probabilities

When you make a judgment about probabilities you might sit back and say
“Is that judgment probable.” This is how the mind works—it is natural to think
that way, and this leads to a hierarchy of types of probabilities (#26) which in
the example just mentioned, | found useful, as well as on other occasions. Now
an objection immediately arises: There is nothing in principle to stop you inte-
grating out the higher types of probability. But it remains a useful suggestion to
help the mind in making judgments. It was used in #547 and has now been
adopted by other Bayesians, using different terminology, such as priors of the
second ‘‘order”’ (instead of “type’’ or “‘two-stage Bayesian models.” A convenient
term for a parameter in a prior is “hyperparameter.” [See also #1230.]

New techniques arose out of the hierarchical suggestion, again apparently
first in connection with the multinomial distribution {in the same paper), name-
ly the concept of Type Il maximum likelihood (maximization of the Bayes fac-
tor against the null hypothesis by allowing the hyperparameters to vary), and
that of a Type Il likelihood ratio for significance tests. | shall discuss these two
concepts when discussing likelihood in general.

(xi) The Choice of Axioms

One distinction between different kinds of Bayesians is merely a mathematical
one, whether the axioms should be taken as simple as possible, or whether, for
example, they should include Kolmogorov's axiom, the axiom of complete ad-
ditivity, 1 prefer the former course because | would want people to use the
axioms even if they do not know what ““enumerable’” means, but | am prepared
to use Kolmogorov’s axiom whenever it seems to be sufficiently mathematically
convenient. Jts interest is mathematical rather than philosophical, except perhaps
for the philosophy of mathematics. This last facet by the way is related to an ex-
cellent lecture by Jimmie Savage of about 1970, called “What kind of probabil-

ity A vian wmne??
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So much for the eleven facets. Numbers (i) to (vii) and number (ix) all
involve a compromise with non-Bayesian methods; and number (xiii) a compro-
mise with the “credibilists."”’ :

IV. EXAMPLES OF THE BAYESIAN INFLUENCE AND OF SUTC

(a) The Logical and Historical Origins of Likelihood

One aspect of utility is communicating with other people. There are many sit-
uations where you are interested in making a decision without communicating.
But there are also many situations, especially in much statistical and scientific
practice where you do wish to communicate. One suggestion, “obvious,” and
often overlooked as usual, is that you should make your assumptions clear and
you should try to separate out the part that is disputable from the part that is
fess s0. One immediate consequence of this suggestion is an emphasis on likeli-
hood, because, as you all know, in Bayes’s theorem you have the initial proba-
bilities, and then you have the likelihoods which are the probabilities of the
event, given the various hypotheses, and then you multiply the likelihoods by
the probabilities and that gives you results proportional to the final probabilities.
That is Bayes's theorem expressed neatly, the way Harold Jeffreys (1939/61) ex-
presscd it. Now the initial probability of the null hypothesis is often highly dis-
putable. One person might judge it to be between 1073 and 107! whereas an-
other might judge it to be between 0.9 and 0.99. There is much less dispute
about likelihoods. There is no dispute about the numerical values of likelihoods
if your basic parametric model is accepted. Of course you usuaily have to use
subjective judgment in laying down your parametric model. Now the hidebound
objectivist tends to hide that fact; he will not volunteer the information that he
uses judgment at all, but if pressed he will say ““I do, in fact, have good judgment.”
So there are good and bad subjectivists, the bad subjectivists are the people with
bad or dishonest judgment and also the people who do not make their assump-
tions clear when communicating with other people. But, on the other hand,
there arc no good 100% (hidebound) objectivists; they are all bad because they
sweep their judgments UTC.

Aside: In the spoken discussion the following beautiful interchanges
took place. Kempthorne (who also made some complimentary com-
ments): Now, on the likelihood business, the Bayesians discovered
likelihood Goddamit! Fisher knew all this stuff. Now look jack, you
are an educated guy. Now please don't pull this stuff. This really
drives me up the wall! Lindley: If Fisher understood the likelihood
principle why did he violate it? Kempthorne: I'm not saying he under-
stood it and 1'm not saying you do or you—nobody understands it.
But likelihood ideas, so to speak, have some relevance to the data.
That's a completely non-Bayesian argument. Good: It dates back to
the 18th century. Kempthorne: Oh it dates back; but there are a lot
of things being (?) Doogian. vou know. Thev started with this euv

THE BAYESIAN INFLUENCE (#838) 35

Doog. Who is this bugger? Doog is the guy who spells everything
backwards.

In reply to this entertaining harangue, which was provoked by a misunder-
standing that was perhaps my fault, although | did refer to Fisherian informa-
tion, I mention the following points. Bayes's theorem (Bayes, 1763/65, 1940/58;
Laplace, 1774) cannot be stated without introducing likelihoods; therefore like-
lihood dates back at least to 1774. Again, maximum likelihood was used by
Daniel Bernoulli (1774/78/1961); see, for example, Todhunter (1865, p. 236) or
Eisenhart (1964, p. 29). Fisher introduced the name /ikelihood and emphasized
the method of maximum likelihood. Such emphasis is important and of course
merits recognition. The fact that he was anticipated in its use does not deprive
him of the major part of the credit or of the blame especially as the notion of
defining [his kind of] amount of information in terms of likelihood was his
brilliant idea and it led to the Aitken-Silverstone information inequality (the
minimum-variance bound}. [ Perhaps not due to Aitken and Silverstone.

Gauss (1798/1809/57/1963) according to Eisenhart, used inverse probability
combined with a Bayes postulate {uniform initial distribution} and an assump-
tion of normal error, to give one of the interpretations of the method of least
squares. He could have used maximum likelihood in this context but apparently
did not, so perhaps Daniel Bernoulli’s use of maximum likelihood had failed to
convince him or to be noticed by him. Further historical research might be re-
quired to settle this last question if it is possible to settle it at all.

So likelihood is important as ali statisticians agree now-a-days, and it takes
sharper values than initial probabilities. But some people have gone to extremes
and say that initial probabilities don’t mean anything. Now [ think one reason
for their saying so is trade unionism of a certain kind. It is very nice for a statis-
tician to be able to give his customer absolutely clear-cut resuits, it is unfortun-
ate that he can’t do it so he is tempted to cover up, to pretend he has not had to
use any judgment. Those Bayesians who insist on sharp initial probabilities are
I think also guilty of “'trade unionism,” unless they are careful to point out
that these are intended only as crude approximations, for | do not believe that
sharp initial probabilities usually correspond to their honest introspection. If,
on the other hand, they agree that they are using only approximations we might
need more information about the degree of the approximations, and then they
would be forced to use inequality judgments, thus bringing them closer to the
True Religion. (I believe Dr. Kyburg’s dislike of the Bayesian position, as expres-
sed by him later in this conference, depended on his interpreting a Bayesian as
one who uses sharp initial probabilities.) The use of “vague’ initial probabilities
(inequality judgments) does not prevent Bayes's theorem from establishing the
likelihood principle. For Dr, Kempthorne's benefit, and perhaps for some others,
| mention that to me the likelihood principle means that the likelihood function
exhausts all the information about the parameters that can be obtained from an
experiment or observation, provided of course that there is an undisputed set of
exhaustive simple statistical hypotheses such as is provided, for example, by a
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parametric model. {In practice, such assumptions are often undisputed but are
never indisputable. This is the main reason why significance tests, such as the
chi-squared test, robust to changes in the model, are of value. Even here there is
a Doogian interpretation that can bc based on beliefs about the distribution of
the test statistic when it is assumed that the null hypothesis is false. | {cave this
point on one sidc for the moment.) Given the likelihood, the inferences that can
be drawn from the observations would, for example, be unaffected if the statis-
tician arbitrarily and falsely calimed that he had a train to catch, although he
rcally had decided to stop sampling because his favorite hypothesis was ahead of
the game. (This might cause you to distrust the statistician, but if you believe his
observations, this distrust would be immaterial.) On the other hand, the “‘Fisher-
ian”" tail-area method for significance testing violates the likelihood principle be-
cause the statistician who is prepared to pretend he has a train to catch (optional
stopping of sampling) can reach arbitrarily high significance levels, given enough
time, even when the null hypothesis is true. For example, see Good (1956).

(b) Weight of Evidence

Closely related to the concept of likelihood is that of weight of evidence,
which I mentioned before and promised to define.

Let us suppose that we have only two hypotheses under consideration, which
might be because we have decided to consider hypotheses two at a time. Denote
them by H and H, where the bar over the second H denotes negation. (These
need not be "simple statistical hypotheses,” as defined in a moment.) Suppose
further that we have an event, experimental result, or observation denoted by E.
The conditional probability of E is either P(E|H) or P(E|H), depending on wheth-
er H or H is assumed. If H and H are “simple statistical hypotheses,” then these
two probabilities have sharp uncontroversial values given tautologically by the
meanings of H and H. Even if they are composite hypothesis, not “‘simple’’ ones,
the Bayesian will still be prepared to talk about these two probabilities. In either
case we can see, by four applications of the product axiom, or by two applica-
tions of Bayes’s theorem, that

P(EIH

S
=

where O denotes odds. (The odds corresponding to a probability p are defined as
p/(1—p).) Turing (1941) called the right side of this equation the factor in favor
of the hypothesis H provided by the evidence E, for obvious reasons. Its logarithm
is the weight of evidence in favor of H, as defined independently by Peirce (1878),
#13, and Minsky and Selfridge (1961). [But see #1382.] It was much used by
Harold Jeffreys (1939/61), except that in that book he identified it with the
final log-odds because his initial probabilities were taken as 1/2. He had previous-
ly (1936) used the general form of weight of evidence and had called it “support.”
The non-Bayesian uses the left side of the equation, and calls it the probability
ratio, provided that H and H are simple statistical hypotheses. He SUTC the right
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side, because he does not talk about the probability of a hypothesis. The Bayesian,
the doctor, the judge and the jury can appreciate the importance of the right
side even with only the vaguest estimates of the initial odds of H. For example,
the Bayesian {or at least the Doogian) can logically argue in the following man-
ner (p. 70 of #13): If we assume that it was sensible to start a sampling experi-
ment in the first place, and if it has provided appreciable weight of evidence in
favor of some hypothesis, and it is felt that the hypothesis is not yet convincing
enough, then it is sensible to enlarge the sample since we know that the final
odds of the hypothesis have increased whatever they arc. Such conclusions can
be reached even though judgments of the relevant initial probability and of the
utilities have never been announced. Thus, even when the initial probability is
extremely vague, the axioms of subjective probability (and weight of evidence)
can be applied.

When one or both of H and H are composite, the Bayesian has to assume rel-
ative initial probabilities for the simple components of the composite hypothesis.
Although these are subjective, they typically seem to be less subjective than the
initial probability of H itself. To put the matter more quantitatively, although
this is not easy in so general a context, | should say that the judgment of the fac-
tor in favor of a hypothesis might typically differ from one person to another by
up to about 5, while the initial odds of H might differ by a factor of 10 or 100
or 1000. Thus the separation of the estimation of the weight of evidence from
the initial or final probability of H serves a useful purpose, especially for com-
munication with other people, just as it is often advisable to separate the judg-
ments of initial probabilities and likelihoods.

It often happens that the weight of evidence is so great that a hypothesis
seems convincing almost irrespective of the initial probability. For example, in
quantum mechanics, it seems convincing that the Schrodinger equation is ap-
proximately true {subject to some limitations), given the rest of some standard
formulation of quantum mechanics, because of great quantities of evidence from
a variety of experiments,such as the measurements of the frequencies of spec-
tral lines to several places of decimals. The large weight of evidence makes it
seem, to people who do not stop to think, that the initial probability of the equa-
tion, conditional on the rest of the theory, is irrelevant; but really there has to
be an implicit judgment that the initial probability is not too fow; for example,
not less than 107%° (In a fuller discussion | would prefer to talk of the relative
odds of two equations in competition.) How we judge such inequalities, whether
explicitly or implicitly, is not clear: if we knew how we made judgments we
would not call them judgments (#183). It must be something to do with the
length of the equation (just as the total length of |the ““meaningful’ nonredun-
dant parts of the] chromosomes in a cell could be used as a measure of complex-
ity of an organism) and with its analogy with the classical wave cquation and
heat equation. (The latter has even suggested to some people, for example, Weizel
[1953], that there is some underlying random motion that will be found to “cx-
plain’”’ the equation.) At any rate the large weight of evidence permits the initial
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probability to be SUTC and it leads to an apparent objectivism (the reliance on
the likelihoods alone) that is really multisubjectivism. The same happens in
many affairs of ordinary life, in perception {p. 68 of #13), in the law, and in
medical diagnosis (for example, #755).

On a point of terminology, the factor in favor of a hypothesis is equal to the
likelihood ratio, in the sense of Neyman, Pearson, and Wilks, only when both H
and H are simple statistical hypotheses. This is another justification for using
Turing’s and Peirce’s expressions, apart from their almost self-explanatory nature,
which provides their potential for improving the reasoning powers of all people.
Certainly the expression “weight of evidence® captures one of the meanings
that was intended by ordinary language. It is not surprising that it was an out-
standing philosopher who first noticed this: for one of the functions of philos-
ophy is to make such captures. [Itis a pity that Peirce’s discussion contained an
error. ]

George Barnard, who is one of the Likelihood Brethren, has rightly emphasized
the merits of graphing the likelihood function. A Bayesian should support this
technique because the initial probability density can be combined with the like-
lihood afterwards. if the Bayesian is a subjectivist he will know that the initial
probability density varies from person to person and so he will sce the value of
graphing of the likelihood function for communication. A Doogian will consider
that even his own initial probability density is not unique so he should approve
even more. Difficulties arise in general if the parameter space has more than two
dimensions, both in picturing the likelihood hypersurface or the posterior den-
sity hypersurface. The problem is less acute when the hypersurfaces are quad-
ratic in the neighborhood of - the maximum. In any case the Bayesian can in ad-
dition reduce the data by using such gquantities as expected utilities. Thus he
has all the advantages claimed by the likelihood brotherhood, but has additional
flexibility. [See also #862, p. 711 and #1444}

(c) Maximum Likelihood, Invariance, Quasiutilities, and Quasilosses

Let us now consider the relationship between Bayesian methods and maximum
likelihood.

In a “full-dress’’ Bayesian estimation of parameters, allowing for utilities, you
compute their final distribution and use it, combined with a loss function, to
find a single recommended value, if a point estimate is wanted. When the loss
function is quadratic this implies that the point estimate should be the final ex-
pectation of the parameter (even for vector parameters if the quadratic is non-
singular). The final expectation is also appropriate if the parameter is a physical
probability because the subjective expectation of a physical probability of an
event is equal to the current subjective probability of that event.

If you do not wish to appear to assume a loss function, you can adopt the ar-
gument of Jeffreys (1939/61, Section 4.0). He points out that for a sample of
size n (n observations), the final probability density is concentrated in a range of

order n-", and that the difference between the maximum-likelihood value of
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the parameter and the mode of the final probability density is of the order 1/n. (I
call this last method, the choice of this mode, a Bayesian method “in mufti."’)
““Hence if the number of observations is large, the error committed by taking the
maximum likelihood solution as the estimate is less than the uncertainty inevita-
ble in any case. . . . The above argument shows that in the great bulk of cases
its results are indistinguishable from those given by the principle of inverse prob-
ability, which supplies a justification for it."” It also will not usually make much
difference if the parameter is assumed to have a uniform initial distribution.
(Jeffreys, 1939/61, p. 145; p. 55 of #13. L. J. Savage, 1959/62, p. 23, named
estimation that depends on this last point “stable estimation.”’)

By a slight extension of Jeffreys’s argument, we can see that a point estimate
based on a loss function, whether it is the expectation of the parameter or some
other value (which will be a kind of average) induced by the loss function, will
also be approximated by using the Bayes method in mufti, and by the maximum-
likelihood estimate, when the number of observations is large. Thus the large-
sample properties of the maximum-likelihood method cannot be used for distin-
guishing it from a wide class of Bayesian methods, whether full-dress or in mufti.
This is true whether we are dealing with point estimates or interval estimates. In-
terval estimates and posterior distributions are generally more useful, but point
estimates are easier to talk about and we shall concentrate on them for the sake
of simplicity.

One may also regard the matter from a more geometrical point of view. |
the graph of the likelihood function is sharply peaked, then the final density will
also usually be sharply peaked at nearly the same place. This again makes it clear
that there is often not much difference between Bayesian estimation and maxi-
mum-likelihood estimation, provided that the sampie is large. This argument ap-
plies provided that the number of parameters is itself not large.

All this is on the assumption that the Bayesian assumptions are not dogmatic
in the sense of ascribing zero initial probability to some range of values of the
parameter; though ‘‘provisional dogmatism’ is often justifiable to save time,
where you hold at the back of your mind that it might be necessary to make an
adjustment in the light of the evidence. Thus | do not agree with the often-given
dogmatic advice that significance tests must be chosen before looking at the
results of an experiment, although of course | appreciate the point of the advice.
It is appropriate advice for people of bad judgment.

It is perhaps significant that Daniel Bernoulli introduced the method of maxi-
mum likelihood, in a special case, at almost the same time as the papers by Bayes
and Laplace on inverse probability were published. But, as | said before, it is the
logical rather than the historical connections that | wish to emphasize most. |
merely state my belief that the influence of informal Bayesian thinking on appar-
ently non-Bayesian methods has been considerable at both a conscious and a fess
conscious level, ever since 1763, and even from 1925 to 1950 when non-Bayesian
methods were at their zenith relative to Bayesian ones.

Let us consider loss functions in more detail. In practice, many statisticians
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42 THE BAYESIAN INFLUENCE (#838)

emphasize this interpretation because the formulation of hypotheses is often
said to lie outside the statistician’s domain of formal activity, qua statistician. It
has been pointed out that Jeffreys’s invariant prior (Jeffreys, 1946) can be re-
garded as a minimax choice when quasiutility is measured by weight of evidence
(##618, 622). Thus other invariant priors could be obtained from other invari-
ant quasiutilities (of which there is a one-parameter family mentioned later).

Jeffreys’s invariant prior is equal to the square root of the determinant of
Fisher’s information matrix, although Jeffreys (1946) did not express it this way
explicitly. Thus there can be a logical influence from non-Bayesian to Bayesian
methods, and of course many other examples of influence in this direction could
be listed.

Let us return to the discussion of Maximum Likelihood (ML) estimation. Since
nearly all methods lead to ROME (Roughly Optimal Mantic Estimation) when
samples are large, the real justification for choosing one method rather than an-
other one must be based on samples that are not large.

One interesting feature of ML estimation, a partial justification for it, is its
invariance property. That is, if the ML estimate of a parameter 8 is denoted by
é, then the ML estimate of £(8), for any monotonic function £, even a discontin-
uous one, is simply f(é) Certainly invariant procedures have the attraction of
decreasing arbitrariness to some extent, and it is a desideratum for an idea/ pro-
cedure. But there are other invariant procedures of a more Bayesian tone to
which | shall soon return: of course a completely Bayesian method would be in-
variant if the prior probabilities and utilities were indisputable. {nvariance, like
patriotism, is not enough. An example of a very bad invariant method is to
choose as the estimate the least upper bound of all possible values of the para-
meter if it is a scalar. This method is invariant under all increasing monotonic
transformations of the parameter!

Let us consider what happens to ML estimation for the physical probabilities
of a multinomial distribution, which has been used as a proving ground for many
phifosophical ideas.

In the notation used earlfier, let the frequencies in the cellsbe ny, n,, . . .,
ng, with total sample size N. Then the ML estimates of the physical probabilities
are m/N, i=1,2, . . ., t.Now [ suppose many people would say that a sample
size of r2 = 1,000 is large, but even with this size it could easily happen that one

of the n;’s is zero, for example, the letter Z could well be absent in a sample of

1,000 letters of English text. Thus a sample might be large in one sense but effec-
tively small in another (##38, 83, 398). If one of the letters is absent (n; = 0),
then the maximum-likelihood estimate of p; is zero. This is an appallingly bad
estimate if it is used in a gamble, because if you believed it (which you wouldn’t)
it would cause you to give arbitrarily large odds against that letter occurring on
the next trial, or perhaps ever. Surely even the Laplace-Lidstone estimate (n; + 1)/
(N + t) would be better, although it is not optimal. The estimate of Jeffreys
(1946), (n;+ 1/2)/(N + t/2), which is based onhis “‘invariant prior,” is also better
(in the same sense) than the ML estimate. Still better methods are available which

e ]
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are connected with reasonable ‘“Bayesian significance tests” for multinomial dis-
tributions (##398, 547).

Utility and quasiutility functions are often invariant in some sense, although
“squared loss’' is invariant only under /inear transformations. For example, if the
utility in estimating a vector parameter 8 as ¢ is u(0,¢), and if the parameter
space undergoes some one-one transformation 8*= () we must have, for con-
sistency, ¢* = (@) and u*(6*¢) = (8,0), where u* denotes the utility function
in the transformed parameter space.

The principle of selecting the least favorable prior when it exists, in accordance
with the minimax strategy, may be called the principle of least utility, or, when
appropriate, the principle of least quasiutility. Since the minimax procedure must
be invariant with respect to transformations of the problem into other equivalent
languages, it follows that the principle of least utility leads to an invariant prior.
Thispoint was made in ##618,622. [t wasalso pointed out there (see also ##699,
701, 810 and App. C of #815) that there is a class of invariant quasiutilities for
distributions. Namely, the quasiutility of assuming a distribution of density g(x),
when the true distribution of x if F(x), was taken as

[ log{g(x) [det A (x)] ~*2}aF(x)

where
3%ul(9,)
Alf)={— ——— } Li=12....
0¢;0¢; 1¢=0
From this it follows further that
[detA(x)] 2

is an invariant prior, though it might be “improper” (have an infinite integral). In
practice improper priors can always be “shaded off" or truncated to give them
propriety (p. 56 of #13).

if 8 is the vector parameter in a distribution function F(x|8) of a random vari-
able x, and @ is not to be used for any other purpose, then in logic we must iden-
tify w(0,4) with the utility of taking the distribution to be F(x|$) instead of
F(x18). One splendid example of an invariant utility is expected weight of evidence
per observation for discriminating between 8 and ¢ or “dinegentropy,”

dF(x|0)
dF(x¢)

u3(8.¢) = [ log dF(x16),

which is invariant under non-singular transformations both of the random
variable and of the parameter space. (Its use in statistical mechanics dates back
to Gibbs.) Moreover it isadditive for entirely independent problems, as a utility
function should be. With this quasituility, A(6) reduces to Fisher's information
matrix, and the square root of the determinant of A(f) reduces to Jeffreys’s
invariant prior. The dinegentropy was used by Jeffreys (1946} as a measure
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of distance between two distributions. The distance of a distribution from a cor-
rect one can be regarded as a kind of loss function. Another additive invariant
quasiutifity is (#82; Rényi, 1961;p. 180 of #755) the “‘generalized dinegentropy,”
[ﬂ@]c dF(xI8) (c>0),
dF(x|¢)

the fimit of which as ¢ ~0 is the expected weight of evidence, u,{8,¢), somewhat
surprising at first sight. The square root of the determinant of the absolute value
of the Hessian of this utility at ¢ = @ is then an invariant prior indexed by the
non-negative number ¢. Thus there is a continuum of additive invariant priors of
which Jeffreys’s is an extreme case. For example, for the mean of a univariate
normal distribution the invariant prior is uniform, mathematically independent
of ¢. The invariant prior for the variance ¢ is o"\/i2(1 + c);, which is propor-
tional to 6" and so is again mathematically independent of c.

In more general situations the invariant prior will depend on ¢ and will there-
fore not be unique. In principle it might be worth while to assume a (“type 111”)
distribution for ¢, to obtain an average of the various additive invariant priors. It
might be best to give extra weight to thevaluec = 0 since weight of evidence seems
to be the best general-purpose measure of corroboration (##211, 599).

It is interesting that Jeffreys’s invariant prior, and its generalizations, and also
the principles of maximum entropy and of minimum discriminaability (Kuflback,
1959) can all be regarded as applications of the principle of least quasiutility.
This principle thus unifies more methods than has commonly been recognized.
The existing criticisms of minimax procedures thus apply to these special cases.

The term “invariance” can be misleading if the class of transformations under
which invariance holds is forgotten, For the invariant priors, although this class
of transformations is large, it does not include transformations to a different
application of the parameters. For example, if 6 has a physical meaning, such as
height of a person, it might occur as a parameter in the distribution of her waist
measurement or her bust measurement, and the invariance will not apply between
these two applications. This in my opinion {and L. J. Savage’s, july 1959) is a
logical objection to the use of invariant priors whén the parameters have clear
physical meaning. To overcome this objection completely it would perhaps be
necessary to consider the joint distribution of all the random variables of poten-
tial interest. [n the example this would mean that the joint distribution of at least
the “vital statistics,”’ given 8, should be used in constructing the invariant
prior.

There is another argument that gives a partial justification for the use of the
invariant priors in spite of Savage’s objection just mentioned. It is based on the
notion of “marginalism” in the sense defined by Good {pp. 808-809 of #174;
p. 61 of #6038;p. 15of #732). 1 quote from the last named. “It is only in mar-
ginal cases that the choice of the prior makes much difference {when it is chosen
to give the non-null hypothesis a reasonable chance of winning on the size of

1
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sample we have available). Hence the name marginalism. It is a trick that does
not give accurate final probabilities, but it protects you from missing what the
data is trying to say owing to a careless choice of prior distribution.” In accor-
dance with this principle one might argue, as do Box and Tiao (1973, p. 44) that
a prior should, at least on some occasions, be uninformative relative to the ex-
periment being performed. From this idea they derive the Jeffreys invariant prior.

It is sometimes said that the aim in estimation is not necessarily to minimize
loss but merely to obtain estimates close to the truth. But there is an implicit
assumption here that it is better to be closer than further away, and thisis equiva-

. lent to the assumption that the loss function is monotonic and has a minimum

{which can be taken as zero) when the estimate is equal to the true value. This
assumption of monotonicity is not enough to determine a unique estimate nor a
unique interval estimate having an assigned probability of covering the true value
(where the probability might be based on information before or after the obser-
vations are taken). But for large enough samples (effectively large, for the purpose
in hand), as | said, all reasonable methods of estimation lead to Rome, if Rome
is not too small,

(d) A Bayes/Non-Bayes Compromise for Probability Density
Estimation

Up to a few years ago, the only nonparametric methods for estimating
probability densities, from observations x,, x2, ..., x,, were non-Bayesian.
These, methods, on which perhaps a hundred papers have been written, are
known as window methods. The basic idea, for estimating the density at a point
x, was to see how many of the NV observations lie in some interval or region
around x, where the number v of such observations tends to infinity while v/N » 0
when N - oo. Also less weight is given to observations far from x than to those
close to x, this weighting being determined by the shape of the window.

Although the window methods have some intuituve appeal it is not clear in
what way they relate to the likelihood principle. On the other hand, if the
method of ML is used it feads to an unsatisfactory estimate of the density func-
tion, namely a collection of fractions 1/N of Dirac delta functions, one at each
of the observations, (A discussant: Go all the way to infinity if they are Dirac
functions, Don’t be lazy! 1JG: Well | drew them a little wide so they are less high
to make up for it.) There is more than one objection to this estimate; partly it
states that the next observation will certainly take a value that it almost certainly
will not, and partly it is not smooth enough to satisfy your subjective judgment
of what a density function should look like. It occurred to me that it should
make sense to apply a ““muftian” Bayesian method, which in this application
means finding some formula giving a posterior density in the function space of
all density functions for the random variable X, and then maximizing this posterior
density so as to obtain a single density function { single “point in function space”)
as the “best” estimate of the whole density function for X. But this means that
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from the log-likelihood T log f(x;) we should subtract a “roughness penalty”
before maximizing. (##733, 699, 701, 810, 1200.) There is some arbitrariness
in the selection of this roughness penalty (which is a functiona! of the required
density function f), which was reduced to the estimation of a single hyperpa-
rameter, but | omit the details. The point | would like to make here is that the
method can be interpreted in a non-Bayesian manner, although it was suggested
for Bayesian reasons. Moreover, in the present state of the art, only the Bayes-
fan interpretation allows us to make a comparison between two hypothetical
density functions. The weight of evidence by itself is not an adequate guide for
this problem. Then again the non-Bayesian could examine the operational
characteristics of the Bayesian interpretation. The Doogian should do this be-
cause it might lead him to a modification of the roughness penalty. The ball
travels backwards and forwards between the Bayesian and non-Bayesian courts,
the ball-game as a whole forming a plank of the Doogian platform.

It is easy to explain why the method of ML breaks down here. [t was not
designed for cases where there are very many parameters, and in this problem
there is an infinite number of them, since the problem is nonparametric. (A
nonparametric problem is one where the class of distribution functions cannot
be specified in terms of a finite number of parameters, but of course any dis-
tribution can be specified in terms of an infinite number of parameters. My
method of doing so is to regard the square root of the density function as a
point in Hilbert space.)

To select a roughness penalty for multidimensional density functions, 1 find

consistency appealing, in the sense that the estimate of densities that are known

to factorize, such as f(x)g{y) in two dimensions, should be the same whether
f and g are estimated together or separately. This idea enabled me to propose a
multidimensional roughness penalty but numerical examples of it have not yet
been tried. |See also #1341.]

An interesting feature of the subtractive roughness-penalty method of density
estimation, just described, is that it can be madc invariant with respect to trans-
formations of the x axes, even though such transformations could make the truc
density function arbitrarily rough. The method proposed for achieving invari-
ance was to make use of the tensor calculus, by noticing that the elements of the
matrix A(#) form a covariant tensor, which could be taken as the “fundamental
tensor” g;; analogous to that occurring in General Relativity. For ‘‘quadratic
loss” this tensor becomes a constant, and, as in Special Relativity, it is then not
necessary to use tensors. The same thing happens more generally if u(0,8) is
any function (with continuous second derivatives) of a quadratic.

{e) Type 1l Maximum Likelihood and the Type Il Likelihood Ratio

The notion of a hierarchy of probabilities, mentioned earlier, can be used to
produce a compromise between Bayesian and non-Bayesian methods, by treat-
ing hyperparameters in some respects as if they were ordinary parameters. In
particullar, a Bayes factor can be maximized with respect to the hyperparameters,
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and the hyperparameters so chosen (their “Type Il ML values) thereby fix the
ordinary prior, and therefore the posterior distribution of the ordinary param-
eters. This Type /1 ML method could also be called the Max Factor method. This
technique was well illustrated in #547. It ignores only judgments you might
have about the Type [l distributions, but | have complete confidence that this
will do far less damage than ignoring all your judgments about Type |l distribu-
tions as in the ordinary method of ML. Certainly in the reference just mentioned
the Type Hl ML estimates of the physical probabilities were far better than the
Type | ML estimates.

The same reference exemplified the Type /! likelihood Ratio. The ordinary
(Neyman-Pearson-Wilks) Likelihood Ratio (LR) is defined as the ratio of two
maximum likelihoods, where the maxima are taken within two spaces corres-
ponding to two hypotheses (one space embedded in the other). The ratio is then
used as a test statistic, its logarithm to base 1/\/e having asymptotically (for
large samples) a chi-squared distribution with a number of degrecs of freedom
equal to the difference of the dimensionalities of the two spaces. The Type |}
Likelihood Ratio is defined analogously as

max P{EIH (0)} /max P{EIH(G)}
few 0el2

where 0 is now a hyperparameter in a prior H (8), Q2 is the set of all values of 8
and w is a subset of £. In the application to multinomial distributions this led
to a new statistic called G having asymptotically a chi-squared distribution with
one degree of freedom (corresponding to a single hyperparameter, namely the
parameter of a symmetric Dirichlet distribution). Later calculations showed that
this asymptotic distribution was accurate down to fantastically small tail-area
probabilities such as 107'%, see #862. In this work it was found that if the Bayes
factor F, based on the prior selected in #547 [see also #1199] were used as a
non-Bayesian statistic, in accordance with the Bayes/non-Bayes compromise, it
was almost equivalent to the use of G in the sense of giving nearly the same
significance levels (tail-area probabilities) to samples. It was also found that the
Bayes factor based on the (less reasonable) Bayes postulate was roughly equiva-
fent in the same sense, thus supporting my claims for the Bayes/non-Bayes
compromise.

(f} The Non-Uniqueness of Utilities

For some decision ptoblems the utility function can be readily measured in
monetary terms; for example, in a gamble. In a moderate gamble the utility can
reasonably be taken as proportional to the relevant quantities of money. Large
insurance companies often take such “linear” gambles, But in many other
decision problems the utility is not readily expressible in monetary terms, and
can also vary greatly from one person to another. In such cases the Doogian,
and many a statistician who is not Doogian or does not know that he is, will
often wish to keep the utilities separate from the rest of the statistical analysis
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if he can. There are exceptions because, for example, many people might assume
a squared loss function, but with different matrices, yet they will all find ex-
pected values to be the optimal estimates of the parameters.

One implication of the recognition that utilities vary from one person to an-
other is that the expected benefit of a client is not necessarily the same, nor
even of the same sign, as that of the statistical consultant. This can produce
ethical problems for the statistician, although it may be possible to reward him
in a manner that alleviates the problems. (See, for example, ##26, 690a.)

One example of this conflict of interests relates to the use of confidence-
interval estimation, This technique enables the statistician to ensure that his in-
terval estimates (gsserted without reference to probability) will be correct say
95% of the time in the long run. If he is not careful he might measure his utility
gain by this fact alone (especially if he learns his statistics from cookbooks)
and it can easily happen that it won’t bear much relation to his client's utility
on a specific occasion. The client is apt to be more concerned with the final
probability that the interval will contain the true value of the parameter.

Neyman has warned against dogmatism but his followers do not often give
nor heed the warning. Notice further that there are degrees of dogmatism and
that greater degrees can be justified when the principles involved are the more
certain. For example, it seems more reasonable to be dogmatic that 7 times 9
is 63 than that witches exist and should be caused not to exist. Similarly it is
more justifiable to be dogmatic about the axioms of subjective probability than
to insist that the probabilities can be sharply judged or that confidence intervals
should be used in preference to Bayesian posterior intervals. (Please don't call
them “Bayesian confidence intervals,” which is a contradiction in terms.)

Utilities are implicit in some circumstances even when many statisticians are
unaware of it, Interval estimation provides an example of this; for it is often
taken as a criterion of choice between two confidence intervals, both having the
same confidence coefficient, that the shorter interval is better. Presumably this
is because the shorter interval is regarded as leading to a more economical search
or as being in general more informative. In either case this is equivalent to the
use of an informal utility or quasiutility criterion. It will often be possible to
improve the interval estimate by taking into account the customer’s utility
function more explicitly.

An example of this is when a confidence interval is stated for the position of
a ship, in the light of direction finding. If an admiral is'presented with say an
elliptical confidence region, | suspect he would reinterpret it as a posterior prob-
ability density surface, with its mode in the center. (#618; Good, 1951.) The
admiral would rationally give up the search when the expense per hour sglnk be-
low the expected utility of locating the ship. In other words, the client- would
sensibly ignore the official meaning of the statistician’s assertion. If the statis-
tician knows this, it might be better, at least for his client, if he went Bayesian
(in some sense) and gave the client what he wanted.
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(g) Tail-Area Probabilities

Null hypotheses are usuaily known in advance to be false, and the point of
significance tests is usually to find out whether they are nevertheiess approxi-
mately true (p. 90 of #13). In other words a null hypothesis is usually com-
posite even jf only just. But for the sake of simplicity | shall here regard the nul!
hypothesis as a simple statistical hypothesis, as an approximation to the usual
real-life situation.

I have heard it said that the notion of tail-area probabilities, for the signifi-
cance test of a null hypothesis Hy (assumed to be a simple statistical hypothesis),
can be treated as a primitive notion, not requiring further analysis. But this
cannot be true irrespective of the test criterion and of the plausible alternatives
to the null hypothesis, as was perhaps originally pointed out by Neyman and
E. S. Pearson. A value X, of the test criterion X should be regarded as “more
extreme” than another one X, only if the observation of X, gives “more evi-
dence” against the null hypothesis. To give an interpretation of “more evidence
it is necessary to give up the idea that tail-areas are primitive notions, as will
soon be clear. One good interpretation of “more evidence’’ is that the weight of
evidence against Ho provided by X, is greater than that provided by X, that is

log P-D- (X1 1H) 5 1o, P.D. (Xa1Hy )
PD. (X, [Hy) P.D. (X 1H,)

where H, isthe negation of H, and is a composite statistical hypothesis, and P.D.
stands for “probability density.” (When H, and H, are both simple statistical
hypotheses there is little reason to use ‘“tail-area” significance tests.) This in-
terpretation of “‘more extreme” in particular provides a solution to the follow-
ing logical difficulty, as also does the Neyman-Pearson technique if all the simple
statistical hypotheses belonging to H, make the simple likelihood ratio mono-
tonic increasing as x increases.

Suppose that the probability density of a test statistic X, given H,, has a
known shape, such as that in Figure 1a. We can transform the x axis so that the
density function becomes any density function we like, such as that illustrated
in Figure 1b. We then might not know whether the x's “more extreme' than
the observed one should be interpreted as all the shaded part of 1(b), where the
ordinates are smaller than the one observed. Just as the tail-area probability
wallah points out that the Bayes postulate is not invariant with respect to trans
formations of the x axis, the Bayesian can say tu quoque. (Compare, for example,
p. 53, of #750; Kalbfleisch, 1971, §7, 1-8.) Of course Doogians and many
other modern Bayesians are not at all committed to the Bayes postulate, though
they often use it as an approximation to their honest judgment, or marginal-
istically.

When tail-areas are used for significance testing, we need to specify what is
meant by a “more extreme” value of the criterion. A smaller ordinate might
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{a)

Figure 1.

not be appropriate, as we have just seen. | believe it is a question of ordering the
values of the ordinate according to the weight of evidence against the null hy-
pothesis, as just suggested. (Sometimes this ordering is mathematically indepen-
dent of the relative initial probabilities of the simple statistical hypotheses that
make up the composite non-null hypothesis H,. In this case the interpretation
of "more extreme’ is maximally robust modulo the Bayesian assumptions.) This
or similar fact is often swept UTC, although a special case of it is often implicit
when it is pointed out that sometimes a single tail should be used and sometimes
a double tail, depending on the nature of the non-null hypotheses.

For some problems it would not be appropriate to interpret “more extreme”
to mean ‘‘further to the right” nor “either further to the right of one point or
further to the left of another” (i.e. for “double tails"). For example, the null
hypothesis might be a bimodal distribution with mean zero, the rivals being un-
modal also with mean zero. Then we might need to regard values of the random
variable close to the origin as significant, in addition to large positive and nega-
tive values. We'd be using a “triple tail” so to speak. All this comes out in the
wash when “more extreme” is interpreted in terms of weight of evidence.

It is stimulating to consider what is “more extreme” in multivariate prob-
lems. It will be adequate to think of bivariate problems which are enough to
bring out ali the philosophical [or logical] aspects, which are more important
than the mathematical ones. We might first ask what is the analogue of being
“further to the right.” One analogue is being “further to the north and east.”
This analogue is often dubious (unless the two independent varaiables are like
chalk and cheese, or like oil and water) even without reference to any Bayesian
or Neymanian-Pearsonian ideas. For under a linear transformation of the in-
dependent variables, such as an orthogonal transformation, there are a contin-
uous infinity of different regions that are further to the north and east. The cor-
responding ambiguity in one dimension refers merely to the question of whether
a single tail is more or less appropriate than a double tail.

The previously mentioned elucidation of “more extreme” in terms of weight
of evidence applies just as much to multivariate problems as to univariate ones,
and prov ides and answer to this “north-east” difficulty,
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Even when a sensible meaning is ascribed to the expression “more extreme,”
my impression is that small tail-areas, such as 1/10000, are by no means as
strong evidence against the null hypothesis as is often supposed, and this is
one reason why | believe that Bayesian methods are important in applications
where small tail areas occur, such as medical trials, and even more in ESP,
radar, cryptanalysis, and ordinary life. It would be unfortunate if a radar signal
were misinterpreted through overlooking this point, thus leading to the end of
life on earth! The more important a decision the more “‘Bayesian’ it js apt to
be.

The question has frequently been raised of how theuse of tail-area significance
tests can be made comformable with a Bayesian philosophy. (See, for example,
Anscombe [{1968/69]).) An answer had already appeared on p. 94 of #13, and
| say something more about it here. (See also p. 61 of #603B.)

A reasonable informal Bayesian interpretation of tail-area probabilities can be
given in some circumstances by treating the criterion X as if it were the whole
of the evidence (even if it is not a sufficient statistic). Suppose that the proba-
bility density fy of X given Hy is known, and that you can make a rough sub-
jective estimate of the density £, given Hy. (If you cannot do this at ali then the
tail area method is | think counterintuitive.) Then we can calculate the Bayes
factor against Hy as a ratio of ordinates £, (X)/fy(X). It turns out that this is
often the order of magnitude of {1/A/N)fx% fii{x)dx/(%fo(x)dx, where AN is
the sample size, and this in its turn will be somewhat less than 1/(P+/ N) where
P is the right-hand tail-area probability on the null hypothesis. (See p. 863 of
#127; improved on p. 416 of #547; and still further in #862.) Moreover, this
argument suggests that, for a fixed sample size, there should be a roughly mono-
tonic relationship and a very rough proportionality between the Bayes factor
F against the null hypothesis and the reciprocal of the tail-area probability, P,
provided of course that the non-null hypothesis is not at all specific. (See also
p. 94 of #13; #547.)

Many elementary textbooks recommend that test criteria should be chosen
before observations are made. Unfortunately this could lead to a data analyst’s
missing some unexpected and therefore probably important feature of the data.
There is no existing substitute for examining the original observations with care.
This is often more valuable than the application of formal significance tests. if
it is easy and inexpensive to obtain new data then there is little objection to the
usual advice, since the original data can be used to formulate hypotheses to be
tested on later sample. But often a further sample is expensive or virtually im-
possible to obtain.

The point of the usual advice is to protect the statistician against his own
poor judgment.

A person with bad judgment might produce many far-fetched hypotheses on
the basis of the first sample. Thinking that they were worth testing, if he were
non-Bayesian he would decide to apply standard significance tests to these hy-
potheses on the basis of a second sample. Sometimes these would nass the tect
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but some one with good judgment might be able to see that they were still im-
probable. It seems to me that the ordinary method of significance tests makes
some sense because experimenters often have reasonable judgment in the for-
mufation of hypotheses, so that the initial probabilities of these hypotheses
are not usually entirely negligible. A statistician who believes his client is sen-
sible might assume that the hypotheses formulated in advance by the client are
plausible, without trying to produce an independent judgment of their initial
probabilities.

Let us suppose that data are expensive and that a variety of different non-null
hypotheses have been formulated on the basis of a sample. Then the Bayesian
analyst would try, in conjunction with his client, to judge the initial probabil-

ities gy, g2, . . . of these hypotheses. Each separate non-null hypothesis might
be associated with a significance test if the Bayesian is Doogian. These tests
might give rise to tail-area probabilities P;, Py, P3, . . . . How can these be

combined into a single tail-area probability? (#174)

Let us suppose that the previous informal argument is applicable and that we
can interpret these tail-area probabilities as approximate Bayes factors C/P;, C/P,,
C/P3, . . . against the null hypothesis, these being in turn based on the assump-
tion of the various rival non-null hypotheses. (‘“Significance tests in parallel.”)
By a theorem of weighted averages of Bayes factors, it follows that the resulting
factor is a weighted average of these, so that the equivalent tail-area probability
is about equal to a weighted harmonic mean of Py, P,, Py, . . . , with weights
g1, 92, 93, - - . . This result is not much affected if C is a slowly decreasing
function of P instead of being constant, which | believe is often the case. Never-
theless the harmonic-mean rule is only a rule of thumb.

But we could now apply the Bayes/non-Bayes compromise for the invention
of test criteria, and use this weighted harmonic mean as a non-Bayes test cri-
terion (p. 863 of #127; ##547, 862).

The basic idea of the Bayes/non-Bayes compromise for the invention of test
criteria is that you can take a Bayesian model, which need not be an especially
good one, come up with a Bayes factor on the basis of this model, but then
use it as if jt were a non-Bayesian test criterion. That js, try to work out or
“Monte Carlo” its distribution based on the null hypothesis, and also its power
relative to various non-null hypotheses.

An example of the Bayes/non-Bayes compromise arises in connection with
discrimination between two approximately multinomial distributions. A crude
Bayesian model would assume that the two distributions were precisely multi-
nomial and this would lead to a finear discriminant function. This could then be
used in a non-Bayesian manner or it might lead to the suggestion of using a linear
discriminant function optimized by some other, possibly non-Bayesian, method.
Similarly an approximate assumption of }nultinormality for two hypotheses
leads to a quadratic discriminant function with a Bayesian interpretation but
which can then be interpreted non-Bayesianwise. (See pp. 49-50 of #397 where
there are further references.)
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Let us now consider an example of an experimental design. | take this example
from Finney (1953, p. 90) who adopts an orthodox (non-Bayesian) line. Finney
.emphasizes that, in his opinion, you should decide in advance how you are go-
Ing to analyze the experimentaf results of a designed experiment. He considered
an experimental design laid out as shown in Figure 2. The design consists of ten
plots, consisting of five blocks each divided into two plots. We decide to apply
treatment A and treatment B in a random order within each block, and we
happen to get the design shown. Now this design could have arisen by another
process: namely by selecting equiprobably the five plots for the application of
treatment A from the 10!/(5!)% = 252 possibilities, Finney then says, “The form
of analysis depends not on the particular arrangement of plots and varieties in
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Figure 2. An agricultural experiment,

the field [1 have been talking about treatments instead here but it does not affect
theargument] buton the process of randomization from which the particular one
was selected.” (Perhaps one should talk of a stochastic or random design pro-
cedure and a realization of the procedure.) For one design procedure we would
perhaps use the comparison within the five pairs, and for the other procedure we
would compare the set of five yields from treatment A with the set of five yields
from treatment B, Leaving aside the analysis of variance, we might find that
every plot A did better than every plot B, thus bringing off a distribution-free
chance of 1/252; but we are “permitted” to say merely that the chance s 1/32
if the design procedure was based on the five blocks. Suppose the statistician
hadn’t said which was his design and then he’d dropped dead after the experi-
ment and suppose this is an important experiment organized by the government
to decide whether a certain big expensive and urgent food production method
was to be put into effect. Would it be reasonable to search the statistician’s
papers carefully to find out what his intentions had been? Or would it on the
other hand be reasonable to call in agriculturalists to look at the plots in the
field in order to try to decide which design would have been more reasonable?
There are of course reasons for choosing one design rather than another one.
So, if you entirely accept the Fisherian logic (as exemplified by Finney) you are
whole-he.arted!y trusting the original judgment of choice of design: this js what
the mystique recommends. My own feeling is that you would do better to judee
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the prior probabilities thatzach of the two designs is to be preferred, and then
use these probabilities as wights in a procedure for combining significance tests
(#174 and p. 83 of #750).

A living agriculturalist right examine the field and say that the design corres-
ponding to the tail-area pabability of 1/32 deserved twice as much weight as
the other design. Then thexarmonic-mean rule of thumb would suggest that the
equivalent tail-area probabity from the observations is

1 1
2x32+1x 2527105

Of course we might do beter by using the analysis of variance in a simifar man-
ner. | have used a distribuion-free approach for the sake of simplicity. This im-
precisc result is better thaieither of the precise ones, 1/32 and 1/252. | predict
that lovers of the “precisio fallacy" will ignore all this. .

It is often said that no-Bayesian methods have the advantage of conveying
thc evidence in an experirent in a scif-contained manner. But we see from the
cxample just discussed tht they depend on a previous judgment; which in the
special case of the dead-dppping of the statistician, has to be a posterior judg-
ment. So it's misleading v tetl the student he must decide on his significance
test in advance, although iis correct according to the Fisherian technique.

(h) Randomness, and SQibjectivism in the Philosophy of Physics

} would have included detailed discussion on the use of random sampling and
random numbers, but hav decided not to do so because my views on the sub-
ject arc cxplained, for eample, on p. 255 of #85A and on pp. 83-90. The
use of random sampling ia device for obtaining apparently precise objectivity
but this precise objectivit is attainable, as a/ways, only at the price of throwing
away some information (y using a Statistician’s Stooge who knows the random
numbers but does not dislose them). But the use of sampling without random-
ization involves the pureBayesian in such difficult judgments that, at least if
he is at all Doogian, he 1ight decide, by Type 11 rationality, to use random
sampling to save time. A Cornfield (1968/70, p. 108) points out, this can be
covered within the Bayesin framework.

Since this conference s concerned with physics as well as with statistics |
should like to mention a onnection between something | have been saying and
a point that is of interesin the philosophy of physics. (This point is also dis
cussed in #815.)

When discussing the robability that the millionth digit of m is a 7, | could
have pointed out that snilar statements can be made about pseudorandom
numbers. These are deteministic sequences that are complicated enough so that
they appear random at last superficially. It would be easy to make them so
complicated that it woulcbe practicaily impossible to find the law of generation
when you do know it. Peudorandom numbers are of value in computer app!i-
cations of the so-calledMonte Carlo method. They are better than random



