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Questions

 What is probability?
« What is this Bayesian stuff anyway?
« What's in it for me?
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Views of Probability

 Classical - Probability is a ratio of favorable
cases to total equipossible cases

 Frequentist - Probability is the limiting value as
the number of trials becomes infinite of the
frequency of occurrence of a random event

 Logical - Probability is a logical property of
one’s state of knowledge about a phenomenon
e Subjectivist - Probability is an ideal rational

agent’s degree of belief about an uncertain
event
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What is Probability?

The “religious debate” is misdirected

Probability is a body of mathematical theory
— Elegant and well-understood branch of mathematics
— Applied to problems of reasoning with uncertainty

We can be more constructive if we focus on:

— What problems can be modeled with probability
— How to apply it sensibly to these problems

Probability can be used as a model for:
— Ratios of favorable to total outcomes
— Frequencies
— States of knowledge

George Mason University



History

 People have long noticed that some events
are imperfectly predictable

« Mathematical probability first arose to
describe regularities in problems with natural

symmetries:
— e.g., games of chance
— equipossible outcomes assumption is justified

 People noticed that probability theory could
be applied more broadly:
— physical (thermodynamics, quantum mechanics)
— social (actuarial tables, sample surveys)
— industrial (equipment failures)
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Hierarchy of Generality

e Classical theory is restricted to equipossible
cases

 Frequency theory is restricted to repeatable,
random phenomena

 Subjectivist theory applies to any event about
which the agent is uncertain
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The Frequentist

 Probability measures an objective property of
real-world phenomena

 Probability can legitimately be applied only to
repeatable, random processes

e Probabilities are associated with collectives
not individual events
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The Subjectivist

 Probability measures rational agent’s degrees of
belief
— No one “correct” probability
— Viewpoints vary on whether “objective probabilities” exist
— Use of probability is justified by axioms of rational belief

e Dawid’s theorem: Given feedback

— rational agents will come to agree on probabilities for
convergent sequences of trials

— these probabilities will correspond to frequencies

 DeFinetti’'s theorem: Formal equivalence
between
— subjective probabilities on exchangeable sequences
— 1id trials with prior on unknown “true” probability
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deFinetti’s Theorem

e Establishes formal equivalence between
exchangeable sequences and iid trials

— A sequence X, X,,...X, of Bernoulli trials is exchangeable
If its probability distribution is independent of
permutations of indices

— A sequence is infinitely exchangeable if X;,X,,...X.is
exchangeable for every n

o If X, X,,... IS Infinitely exchangeable then:
- Sn—“® p almost surely, where s,=ax
i=1

— P, =k) =& P o o)
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Views on Statistical Inference

 Parametric statistics (of any persuasion)
— Assume data X follow distribution f(X|Qq)
— Goal: infer gfrom X

 Frequentist inference
— Parameter g is unknown, data X have distribution f(X|q)
— Base inferences on distribution f(X|q)

« Bayesian inference
— Parameter qis uncertain, has distribution g(q)

— Data X are unknown before observation, predictive
(marginal) distribution f(X)

— Data X are known after observation
— Inference consists of conditioning on X to find g(g|X)

— Bayesians condition on knowns and put probabilities on

unknowns
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Decision Theory

* Inference cannot be separated from decision

Elements of decision problem
— Options
— Consequences

— Probability distribution expresses knowledge about
consequences

— Utility function expresses preferences for consequences

Optimal choice is option with maximum expected
utility
Framework for:

— Information gathering (experimental design, sequential decisior

— Estimation and hypothesis testing
— Model selection (Occam'’s razor)
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Why Be a Bayesian?

Unified framework for rational inference and
decision under uncertainty

— Spectrum of problems from data-rich to data-poor

— Spectrum from pure inference to pure decision

Intuitive plausibility of models

Understandability of results

— “If an experiment like this were performed many times we
would expect in 95% of the cases that an interval
calculated by the procedure we applied would include the
true value of g”

— “Given the prior distribution for g and the observed data,
the probability that g lies between 3.7 and 4.9 is 95%”

Straightforward way to treat problems not

easily handled in other approaches
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Subjectivity

 All models have subjective elements
— Distributional assumptions
— Independence assumptions
— Factors included in model

 The prior distribution is just another element
of a statistical model

« How to keep yourself honest:
— Justify assumptions
— Evaluate plausibility of assumptions in the light of data
— Report sensitivity of analysis to assumptions
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Where Is the Payoff?
e Verities from STAT 101

— Data mining is a bad word
— Don’t grub through data without a priori hypotheses
— Never estimate more than a few parameters at a time

— Never use models with a “large” number of parameters
relative to your data set

e The “dirty little secret”
— There is NEVER enough datal!!

— Everybody “peeks” at the data
— Models always grow in complexity as we get more data

* Hierarchical Bayesian models

— Formally sound and practical methodology for high-
dimensional problems
— Multiple levels of randomness allow adaptation of model
to intrinsic dimensionality of the data set
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Example

 Educational testing
— Test scores for 15 classrooms
— Between 12 and 28 students per class
— Objective: estimate mean and error interval for each
class
e Simple hierarchical model
— Classrooms are exchangeable
— Students within class are exchangeable
— Scores follow normal distribution
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Graphical Models

 Intuitively natural way to encode
Independence assumptions

 Directed and undirected graphs
— Bayesian networks
— Markov graphs
— Hybrids

e Causal and correlational models

 Estimation and inference algorithms that
make use of graph structure

— e.g., Gibbs sampling and other Markov Chain Monte Carlo
methods
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Hierarchical Model
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« Joint distribution h(a)P g(qa;) Pf(X;|q)
 Prior on a can be vague
 Model adapts to dimensionality of data

 Empirical reports that hierarchical models improve out-
of-sample performance on high-dimensional problems
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Challenges

e Overfitting hasn’t gone away
— Priors that adapt to effective dimensionality of data
— Robust semi-parametric models

« Computational complexity
— Monte Carlo
— Extracting tractable submodels
— Analytical approximations

* Prior specification
— Semantics, elicitation

— Exploring behavior of “typical” datasets/parameter
manifolds generated by prior

— Exploring behavior of posterior for “typical” and
“nontypical” datasets

— Visualization
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Bayesian Model Choice

 Uncertainty about model structure

P(X)=a P(S)¢¥ (XIS.qs)da

ds

 Bayesian updating of structural uncertainty

P (X 1X,95)

new new

1X)= A P(SIX)P(X

o D ~
— a P(SIX) d:)(xnewlx!qss)f(qsl‘
S Qs
 This sum cannot be computed explicitly
— Heuristic search
— Markov Chain Monte Carlo Model Composition (MC3)
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Occam’s Razor and Model Choice

« Occam’s razor says “prefer simplicity”
e As a heuristic it has stood the test of time

e It has been argued that Bayes justifies
Occam’s razor. More precisely, if:

— you put a positive prior probability on a sharp null
hypothesis

— the data are generated by a model “near” the null model
— the sample size is not too large

Then (usually) the posterior probability of the
null hypothesis is larger than its prior
probability
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Occam’s Razor (cont)

o Of course we don’t really believe the null
hypothesis!

« We don’t believe the alternative hypothesis either!

« When predictive consequences of H, and H, are
similar:
— H, is robust to plausible departures from H,

— When H, has many parameters in relation to the amount of data
available we may do much worse by using H,

— H, is robust to (likely) misspecification of parameters g, of H,

« But Occam’s razor only works if we're willing to
abandon simple hypotheses when they conflict
with observations
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Decision Theory and Occam’s Razol

« Occam’s razor is really about utility and not
probability
— Choose the simplest model that will give you good
performance on problems you haven’t seen
* Decision theoretic justification
— The simple model is not “correct”

— Adding more parameters to fit the data is often not the
way to make it correct

— Too-complex models give false sense of precision and
are difficult to apply

— Occam’s razor is a heuristic for finding high-utility
models
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Another Level to the Hierarchy

e Statistics is about designing procedures that
work well for large classes of problems
— Problems to which it applies
— Diagnosing when it doesn’t apply

* Decision theory can help us think about this
problem
— Inference procedures that usually work well

— Inference procedures that are robust to plausible
departures from model specification

— Ways to diagnose situations in which procedures don’t
work

e Is the best object-level procedure necessarily
Bayesian?
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Summary

« Bayesian decision theory is a unified framework for

— Thinking about problems of inference and decision making undet
uncertainty

— Designing statistical procedures that are expected to work well o
large classes of problems

— Analyzing behavior of statistical procedures on a class of
problems
 Promising technologies:

— Bayesian hierarchical models
» Adaptive dimensionality
» Few “truly free” parameters

— Bayesian model selection
 Religious dogma is detrimental to good statistics
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