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1 Introduction

Parametric model:

Observations x1, . . . , xn generated from a probability distribution

fi(xi|θi, x1, . . . , xi−1) = fi(xi|θi, x1:i−1)

x = (x1, . . . , xn) ∼ f(x|θ), θ = (θ1, . . . , θn)

Associated likelihood

`(θ|x) = f(x|θ)
[inverted density]
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1.1 The Bayesian framework

Bayes theorem = Inversion of probabilities

If A and E are events such that P (E) 6= 0, P (A|E) and P (E|A) are related by

P (A|E) =
P (E|A)P (A)

P (E|A)P (A) + P (E|Ac)P (Ac)

=
P (E|A)P (A)

P (E)

[Thomas Bayes, 1764]

Actualization principle
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New perspective

• Uncertainty on the parameters θ of a model modeled through a probability

distribution π on Θ, called prior distribution

• Inference based on the distribution of θ conditional on x, π(θ|x), called

posterior distribution

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ) dθ

.
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Definition 1 A Bayesian statistical model is made of a parametric statistical model,

(X , f(x|θ)) ,

and a prior distribution on the parameters,

(Θ, π(θ)) .



Bayesian framework/Prior & Posterior/Improperness 7

Justifications

• Semantic drift from unknown to random

• Actualization of the information on θ by extracting the information on θ

contained in the observation x

• Allows incorporation of imperfect information in the decision process

• Unique mathematical way to condition upon the observations (conditional

perspective)

• Penalization factor
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Bayes’ example:

Billiard ball W rolled on a line of length one, with a uniform probability of stopping

anywhere: W stops at p.

Second ball O then rolled n times under the same assumptions. X denotes the

number of times the ball O stopped on the left of W .

Given X , what inference can we make on p?
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Modern translation:

Derive the posterior distribution of p given X , when

p ∼ U([0, 1]) and X ∼ B(n, p)

Since

P (X = x|p) =
(

n

x

)
px(1− p)n−x,

P (a < p < b and X = x) =
∫ b

a

(
n

x

)
px(1− p)n−xdp

and

P (X = x) =
∫ 1

0

(
n

x

)
px(1− p)n−x dp,
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then

P (a < p < b|X = x) =

∫ b

a

(
n
x

)
px(1− p)n−x dp∫ 1

0

(
n
x

)
px(1− p)n−x dp

=

∫ b

a
px(1− p)n−x dp

B(x + 1, n− x + 1)
,

i.e.

p|x ∼ Be(x + 1, n− x + 1)

[Beta distribution]



Bayesian framework/Prior & Posterior/Improperness 11

1.2 Prior and posterior distributions

Given f(x|θ) and π(θ), several distributions of interest:

(a) the joint distribution of (θ, x),

ϕ(θ, x) = f(x|θ)π(θ) ;

(b) the marginal distribution of x,

m(x) =
∫

ϕ(θ, x) dθ

=
∫

f(x|θ)π(θ) dθ ;
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(c) the posterior distribution of θ,

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ) dθ

=
f(x|θ)π(θ)

m(x)
;

(d) the predictive distribution of y, when y ∼ g(y|θ, x),

g(y|x) =
∫

g(y|θ, x)π(θ|x)dθ .
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Posterior distribution central to Bayesian inference

• Operates conditional upon the observations

• Incorporates the requirement of the Likelihood Principle

• Avoids averaging over the unobserved values of x

• Coherent updating of the information available on θ, independent of the order in

which i.i.d. observations are collected

• Provides a complete inferential scope



Bayesian framework/Prior & Posterior/Improperness 14

Example 1 Consider x ∼ N (θ, 1) and θ ∼ N (0, 10).

π(θ|x) ∝ f(x|θ)π(θ) ∝ exp
(
− (x− θ)2

2
− θ2

20

)

∝ exp
(
−11θ2

20
+ θx

)

∝ exp
(
−11

20
{θ − (10x/11)}2

)

and

θ|x ∼ N
(

10
11

x,
10
11

)
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Natural confidence region

C = {θ;π(θ|x) > k}

=
{

θ;
∣∣∣∣θ −

10
11

x

∣∣∣∣ > k′
}

Highest posterior density (HPD) region
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1.3 Improper prior distributions

Necessary extension from a prior distribution to a prior σ-finite measure π such that
∫

Θ

π(θ) dθ = +∞

Improper prior distribution
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Justifications

Often automatic prior determination leads to improper prior distributions

1. Only way to derive a prior in noninformative settings

2. Performances of estimators derived from these generalized distributions usually

good

3. Improper priors often occur as limits of proper distributions

4. More robust answer against possible misspecifications of the prior
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5. Generally more acceptable to non-Bayesians, with frequentist justifications,

such as:

(i) minimaxity

(ii) admissibility

(iii) invariance

6. Improper priors prefered to vague proper priors such as aN (0, 1002)
distribution

7. Penalization factor in

min
d

∫
L(θ, d)π(θ)f(x|θ) dx dθ
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Validation

Extension of the posterior distribution π(θ|x) associated with an improper prior π

as given by Bayes’s formula

π(θ|x) =
f(x|θ)π(θ)∫

Θ
f(x|θ)π(θ) dθ

,

when ∫

Θ

f(x|θ)π(θ) dθ < ∞
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Example 2 If x ∼ N (θ, 1) and π(θ) = $, constant, the pseudo marginal

distribution is

m(x) = $

∫ +∞

−∞

1√
2π

exp
{−(x− θ)2/2

}
dθ = $

and the posterior distribution of θ is

π(θ | x) =
1√
2π

exp
{
− (x− θ)2

2

}
,

i.e., corresponds toN (x, 1).

[independent of ω]
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Warning

The mistake is to think of them [non-informative priors] as representing ignorance

[Lindley, 1990]
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Example 3 Consider a θ ∼ N (0, τ2) prior. Then

Pπ (θ ∈ [a, b]) −→
τ→∞

0

for any (a, b)
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Example 4 Consider a binomial observation, x ∼ B(n, p), and

π∗(p) ∝ [p(1− p)]−1

[Haldane, 1931]

The marginal distribution,

m(x) =
∫ 1

0

[p(1− p)]−1

(
n

x

)
px(1− p)n−xdp

= B(x, n− x),

is only defined for x 6= 0, n .
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2 From Prior Information

to Prior Distributions

The most critical and most criticized point of Bayesian analysis !

Because...

the prior distribution is the key to Bayesian inference
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But...

In practice, it seldom occurs that the available prior information is precise enough to

lead to an exact determination of the prior distribution

There is no such thing as the prior distribution!
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Rather...

The prior is a tool summarizing available information as well as uncertainty related

with this information,

And...

Ungrounded prior distributions produce unjustified posterior inference
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2.1 Subjective determination

Example 5 Capture-recapture experiment on migrations between zones

Prior information on capture and survival probabilities, pt and qit

Time 2 3 4 5 6

pt Mean 0.3 0.4 0.5 0.2 0.2

95% cred. int. [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.05,0.4] [0.05,0.4]

Site A B

Time t=1,3,5 t=2,4 t=1,3,5 t=2,4

qit Mean 0.7 0.65 0.7 0.7

95% cred. int. [0.4,0.95] [0.35,0.9] [0.4,0.95] [0.4,0.95]
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Corresponding prior modeling

Time 2 3 4 5 6

Dist. Be(6, 14) Be(8, 12) Be(12, 12) Be(3.5, 14) Be(3.5, 14)

Site A B

Time t=1,3,5 t=2,4 t=1,3,5 t=2,4

Dist. Be(6.0, 2.5) Be(6.5, 3.5) Be(6.0, 2.5) Be(6.0, 2.5)
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Strategies for prior determination

• Use a partition of Θ in sets (e.g., intervals), determine the probability of each

set, and approach π by an histogram

• Select significant elements of Θ, evaluate their respective likelihoods and

deduce a likelihood curve proportional to π

• Use the marginal distribution of x,

m(x) =
∫

Θ

f(x|θ)π(θ) dθ

• Empirical and hierarchical Bayes techniques
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• Select a maximum entropy prior when prior characteristics are known:

IEπ[gk(θ)] = ωk (k = 1, . . . , K)

with solution, in the discrete case

π∗(θi) =
exp

{∑K
1 λkgk(θi)

}

∑
j exp

{∑K
1 λkgk(θj)

} ,

and, in the continuous case,

π∗(θ) =
exp

{∑K
1 λkgk(θ)

}
π0(θ)

∫
exp

{∑K
1 λkgk(η)

}
π0(dη)

,

the λk ’s being Lagrange multipliers and π0 a reference measure [Caveat]
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• Parametric approximations

Restrict choice of π to a parameterised density

π(θ|λ)

and determine the corresponding (hyper-)parameters

λ

through the moments or quantiles of π
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Example 6 For the normal model x ∼ N (θ, 1), ranges of the posterior moments

for fixed prior moments µ1 = 0 and µ2.

Minimum Maximum Maximum

µ2 x mean mean variance

3 0 -1.05 1.05 3.00

3 1 -0.70 1.69 3.63

3 2 -0.50 2.85 5.78

1.5 0 -0.59 0.59 1.50

1.5 1 -0.37 1.05 1.97

1.5 2 -0.27 2.08 3.80

[Goutis, 1990]
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2.2 Conjugate priors

Specific parametric family with analytical properties

Definition 2 A family F of probability distributions on Θ is conjugate for a

likelihood function f(x|θ) if, for every π ∈ F , the posterior distribution π(θ|x) also

belongs to F .

[Raiffa and Schlaifer (1961)]

Only of interest when F is parameterised : switching from prior to posterior

distribution is reduced to an updating of the corresponding parameters.
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Justifications

• Limited/finite information conveyed by x

• Preservation of the structure of π(θ)

• Exchangeability motivations

• Device of virtual past observations

• Linearity of some estimators

• Tractability and simplicity

• First approximations to adequate priors, backed up by robustness analysis
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Exponential families

Definition 3 The family of distributions

f(x|θ) = C(θ)h(x) exp{R(θ) · T (x)}

is called an exponential family of dimension k. When Θ ⊂ IRk, X ⊂ IRk and

f(x|θ) = C(θ)h(x) exp{θ · x},

the family is said to be natural.
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Interesting analytical properties :

• Sufficient statistics (Pitman–Koopman Lemma)

• Common enough structure (normal, binomial, Poisson, Wishart, &tc...)

• Analycity (IEθ[x] = ∇ψ(θ), ...)

• Allow for conjugate priors

π(θ|µ, λ) = K(µ, λ) eθ.µ−λψ(θ)
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f(x|θ) π(θ) π(θ|x)

Normal Normal

N (θ, σ2) N (µ, τ2) N (ρ(σ2µ + τ2x), ρσ2τ2)

ρ−1 = σ2 + τ2

Poisson Gamma

P(θ) G(α, β) G(α + x, β + 1)

Gamma Gamma

G(ν, θ) G(α, β) G(α + ν, β + x)

Binomial Beta

B(n, θ) Be(α, β) Be(α + x, β + n− x)
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f(x|θ) π(θ) π(θ|x)

Negative Binomial Beta

N eg(m, θ) Be(α, β) Be(α + m,β + x)

Multinomial Dirichlet

Mk(θ1, . . . , θk) D(α1, . . . , αk) D(α1 + x1, . . . , αk + xk)

Normal Gamma

N (µ, 1/θ) Ga(α, β) G(α + 0.5, β + (µ− x)2/2)
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Linearity of the posterior mean

If

θ ∼ πλ,x0(θ) ∝ eθ·x0−λψ(θ)

with x0 ∈ X , then

IEπ[∇ψ(θ)] =
x0

λ
.

Therefore, if x1, . . . , xn are i.i.d. f(x|θ),

IEπ[∇ψ(θ)|x1, . . . , xn] =
x0 + nx̄

λ + n
.
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But...

Example 7 When x ∼ Be(α, θ) with known α,

f(x|θ) ∝ Γ(α + θ)(1− x)θ

Γ(θ)
,

conjugate distribution not so easily manageable

π(θ|x0, λ) ∝
(

Γ(α + θ)
Γ(θ)

)λ

(1− x0)θ
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Example 8 Coin spun on its edge, proportion θ of heads

When spinning n times a given coin, number of heads

x ∼ B(n, θ)

Flat prior, or mixture prior

1
2

[Be(10, 20) + Be(20, 10)]

or

0.5Be(10, 20) + 0.2Be(15, 15) + 0.3Be(20, 10).

Mixtures of natural conjugate distributions also make conjugate families
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p
0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

2.0
2.5

3.0
1 comp.
2 comp.
3 comp.

Three prior distributions for a spinning-coin experiment
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p
0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1 comp.
2 comp.
3 comp.

Posterior distributions for 50 observations
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2.3 Noninformative prior distributions

What if all we know is that we know “nothing” ?!

In the absence of prior information, prior distributions solely derived from the sample

distribution f(x|θ)
[Noninformative priors]
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Re-Warning

Noninformative priors cannot be expected to represent exactly total

ignorance about the problem at hand, but should rather be taken as

reference or default priors, upon which everyone could fall back when the

prior information is missing.

[Kass and Wasserman, 1996]
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2.3.1 Laplace’s prior

Principle of Insufficient Reason (Laplace)

Θ = {θ1, · · · , θp} π(θi) = 1/p

Extension to continuous spaces

π(θ) ∝ 1
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• Lack of reparameterization invariance/coherence

ψ = eθ π1(ψ) =
1
ψ
6= π2(ψ) = 1

• Problems of properness

x ∼ N (θ, σ2), π(θ, σ) = 1

π(θ, σ|x) ∝ e−(x−θ)2/2σ2
σ−1

⇒ π(σ|x) ∝ 1 (!!!)
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2.3.2 Invariant priors

Principle: Agree with the natural symmetries of the problem

- Identify invariance structures as group action

G : x → g(x) ∼ f(g(x)|ḡ(θ))

Ḡ : θ → ḡ(θ)

G∗ : L(d, θ) = L(g∗(d), ḡ(θ))

- Determine an invariant prior

π(ḡ(A)) = π(A)
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Solution: Right Haar measure

But...

• Requires invariance to be part of the decision problem

• Missing in most discrete setups (Poisson)
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2.3.3 The Jeffreys prior

Based on Fisher information

I(θ) = IEθ

[
∂`

∂θt

∂`

∂θ

]

The Jeffreys prior distribution is

π∗(θ) ∝ |I(θ)|1/2
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Pros & Cons

• Relates to information theory

• Agrees with most invariant priors

• Parameterization invariant

• Suffers from dimensionality curse

• Not coherent for Likelihood Principle
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Example 9

x ∼ Np(θ, Ip), η = ‖θ‖2, π(η) = ηp/2−1

IEπ[η|x] = ‖x‖2 + p Bias 2p
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Example 10 If x ∼ B(n, θ), Jeffreys’ prior is

Be(1/2, 1/2)

and, if n ∼ N eg(x, θ), Jeffreys’ prior is

π2(θ) = −IEθ

[
∂2

∂θ2
log f(x|θ)

]

= IEθ

[
x

θ2
+

n− x

(1− θ)2

]
=

x

θ2(1− θ)
,

∝ θ−1(1− θ)−1/2
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2.3.4 Reference priors

Generalizes Jeffreys priors by distinguishing between nuisance and interest

parameters

Principle: maximize the information brought by the data

IEn

[∫
π(θ|xn) log(π(θ|xn)/π(θ))dθ

]

and consider the limit of the πn

Outcome: most usually, Jeffreys prior
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Nuisance parameters:

For θ = (λ, ω),

π(λ|ω) = πJ(λ|ω) with fixed ω

Jeffreys’ prior conditional on ω, and

π(ω) = πJ(ω)

for the marginal model

f(x|ω) ∝
∫

f(x|θ)πJ(λ|ω)dλ

• Depends on ordering

• Problems of definition
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Example 11 Neyman–Scott problem

Observation of xij iidN (µi, σ
2), i = 1, . . . , n, j = 1, 2.

The usual Jeffreys prior for this model is

π(µ1, . . . , µn, σ) = σ−n−1

which is inconsistent because

IE[σ2|x11, . . . , xn2] = s2/(2n− 2),

where

s2 =
n∑

i=1

(xi1 − xi2)2

2
,
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Associated reference prior with θ1 = σ and θ2 = (µ1, . . . , µn) gives

π(θ2|θ1) ∝ 1 ,

π(σ) ∝ 1/σ

Therefore,

IE[σ2|x11, . . . , xn2] = s2/(n− 2)
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2.3.5 Matching priors

Frequency-validated priors:

Some posterior probabilities

π(g(θ) ∈ Cx|x) = 1− α

must coincide with the corresponding frequentist coverage

Pθ(Cx 3 g(θ)) =
∫

IICx(g(θ)) f(x|θ) dx ,

...asymptotically
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For instance, Welch and Peers’ identity

Pθ(θ ≤ kα(x)) = 1− α + O(n−1/2)

and for Jeffreys’ prior,

Pθ(θ ≤ kα(x)) = 1− α + O(n−1)
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In general, choice of a matching prior dictated by the cancelation of a first order term

in an Edgeworth expansion , like

[I ′′(θ)]−1/2I ′(θ)∇ log π(θ) +∇t{I ′(θ)[I ′′(θ)]−1/2} = 0 .
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Example 12 Linear calibration model

yi = α+βxi+εi, y0j = α+βx0+ε0j , (i = 1, . . . , n, j = 1, . . . , k)

with θ = (x0, α, β, σ2) and x0 quantity of interest
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One-sided differential equation:

|β|−1s−1/2 ∂

∂x0
{e(x0)π(θ)} − e−1/2(x0)sgn(β)n−1s1/2 ∂π(θ)

∂x0

−e−1/2(x0)(x0 − x̄)s−1/2 ∂

∂β
{sgn(β)π(θ)} = 0

with

s = Σ(xi − x̄)2, e(x0) = [(n + k)s + nk(x0 − x̄)2]/nk .
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Solutions

π(x0, α, β, σ2) ∝ e(x0)(d−1)/2|β|dg(σ2) ,

where g arbitrary.
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Reference priors

Partition Prior

(x0, α, β, σ2) |β|(σ2)−5/2

x0, α, β, σ2 e(x0)−1/2(σ2)−1

x0, α, (σ2, β) e(x0)−1/2(σ2)−3/2

x0, (α, β), σ2 e(x0)−1/2(σ2)−1

x0, (α, β, σ2) e(x0)−1/2(σ2)−2
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2.3.6 Other approaches

• Rissanen’s transmission information theory and minimum length priors

• Testing priors

• stochastic complexity
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3 Decision-Theoretic Foundations of Statistical

Inference
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3.1 Evaluating estimators

Purpose of most inferential studies: to provide the statistician/client with a decision

d ∈ D
Requires an evaluation criterion for decisions and estimators

L(θ, d)

[loss function]
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Bayesian Decision Theory

Three spaces/factors:

(1) On X , distribution for the observation, f(x|θ);

(2) On Θ, prior distribution for the parameter, π(θ);

(3) On Θ×D, loss function associated with the decisions, L(θ, δ);
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Foundations

There exists an axiomatic derivation of the existence of a loss function.

[DeGroot, 1970]
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3.2 Loss functions

Decision procedure δ usually called estimator

(while its value δ(x) called estimate of θ)

Impossible to uniformly minimize (in d) the loss function

L(θ, d)

when θ is unknown
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Frequentist Principle

Average loss (or frequentist risk)

R(θ, δ) = IEθ[L(θ, δ(x))]

=
∫

X
L(θ, δ(x))f(x|θ) dx

Principle Select the best estimator based on the risk function
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Difficulties with frequentist paradigm

(1) Error averaged over the different values of x proportionally to the density

f(x|θ): not so appealing for a client, who wants optimal results for her data x!

(2) Assumption of repeatability of experiments not always grounded.

(3) R(θ, δ) is a function of θ: there is no total ordering on the set of procedures.
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Bayesian principle

Principle Integrate over the space Θ to get the posterior expected loss

ρ(π, d|x) = IEπ[L(θ, d)|x]

=
∫

Θ

L(θ, d)π(θ|x) dθ,
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Bayesian principle (contd.)

Alternative Integrate over the space Θ and compute integrated risk

r(π, δ) = IEπ[R(θ, δ)]

=
∫

Θ

∫

X
L(θ, δ(x)) f(x|θ) dx π(θ) dθ

which induces a total ordering on estimators.

Therefore,

existence of an optimal decision
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Bayes estimator

An estimator minimizing

r(π, δ)

can be obtained by selecting, for every x ∈ X , the value δ(x) which minimizes

ρ(π, δ|x)

since

r(π, δ) =
∫

X
ρ(π, δ(x)|x)m(x) dx.

Both approaches give the same estimator
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Definition 4 A Bayes estimator associated with a prior distribution π and a loss

function L is

arg min
δ

r(π, δ)

The value r(π) = r(π, δπ) is called the Bayes risk
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Infinite Bayes risk

Above result valid for both proper and improper priors when

r(π) < ∞

Otherwise, generalized Bayes estimator defined pointwise:

δπ(x) = arg min
d

ρ(π, d|x)

if ρ(π, d|x) is well-defined for every x.

Warning: generalized Bayes 6= improper Bayes
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3.3 Minimaxity and admissibility

3.3.1 Minimaxity

Insurance against the worst case and total ordering onD∗

Definition 5 The minimax risk associated with a loss L is

R̄ = inf
δ∈D∗

sup
θ

R(θ, δ) = inf
δ∈D∗

sup
θ

IEθ[L(θ, δ(x))],

and a minimax estimator is any estimator δ0 such that

sup
θ

R(θ, δ0) = R̄.
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Criticisms

• Reasons in terms of the worst case

• Does not incorporate prior information

• Too conservative

• Difficult to exhibit
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Example 13 Consider

δ2(x) =

{(
1− 2p− 1

||x||2
)

x if ||x||2 ≥ 2p− 1,

0 otherwise,

to estimate θ when x ∼ Np(θ, Ip) under quadratic loss,

L(θ, d) = ||θ − d||2.
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Comparison of δ2 with δ1(x) = x, maximum likelihood estimator, for p = 10.

0 2 4 6 8 10

0
2

4
6

8
10

theta

δ2 cannot be minimax
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3.3.2 Minimax vs. maximin

Existence:

IfD ⊂ IRk convex and compact, and if L(θ, d) continuous and convex as a

function of d for every θ ∈ Θ, there exists a nonrandomized minimax estimator.
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Connection with Bayesian approach

The Bayes risks are always smaller than the minimax risk:

r = sup
π

r(π) = sup
π

inf
δ∈D

r(π, δ) ≤ r = inf
δ∈D∗

sup
θ

R(θ, δ).

r maximin risk

least favourable prior

Definition 6 The estimation problem has a value when r = r, i.e.

sup
π

inf
δ∈D

r(π, δ) = inf
δ∈D∗

sup
θ

R(θ, δ).
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When the problem has a value, some minimax estimators are Bayes estimators for

the least favourable distributions.

Example 14 Consider x ∼ Be(θ) with

θ ∈ {0.1, 0.5}

and

δ1(x) = 0.1, δ2(x) = 0.5,

δ3(x) = 0.1 IIx=0 + 0.5 IIx=1, δ4(x) = 0.5 IIx=0 + 0.1 IIx=1.

under

L(θ, d) =





0 if d = θ

1 if (θ, d) = (0.5, 0.1)
2 if (θ, d) = (0.1, 0.5)
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Minimax estimator at the intersection of the diagonal of IR2 with the lower boundary

ofR:

δ∗(x) =
{

δ3(x) with probability α = 0.87,

δ2(x) with probability 1− α.

Also randomized Bayes estimator for

π(θ) = 0.22 II0.1(θ) + 0.78 II0.5(θ)
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Checking minimaxity

If δ0 is a Bayes estimator for π0 and if

R(θ, δ0) ≤ r(π0)

for every θ in the support of π0, δ0 is minimax and π0 is the least favourable

distribution.
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Example 15 Consider x ∼ B(n, θ) for the loss

L(θ, δ) = (δ − θ)2.

When θ ∼ Be
(√

n
2 ,

√
n

2

)
, the posterior mean is

δ∗(x) =
x +

√
n/2

n +
√

n
.

with constant risk

R(θ, δ∗) = 1/4(1 +
√

n)2.

Therefore, δ∗ is minimax

[H. Rubin]
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Checking minimaxity (contd.)

If for a sequence (πn) of proper priors, the generalized Bayes estimator δ0 satisfies

R(θ, δ0) ≤ lim
n→∞

r(πn) < +∞

for every θ ∈ Θ, then δ0 is minimax.
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Example 16 When x ∼ N (θ, 1),

δ0(x) = x

is a generalized Bayes estimator associated with

π(θ) ∝ 1

Since, for πn(θ) = exp{−θ2/2n},

R(δ0, θ) = IEθ

[
(x− θ)2

]
= 1

= lim
n→∞

r(πn) = lim
n→∞

n

n + 1

δ0 is minimax.
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3.3.3 Admissibility

Reduction of the set of estimators based on “local” properties

Definition 7 An estimator δ0 is inadmissible if there exists an estimator δ1 such

that, for every θ,

R(θ, δ0) ≥ R(θ, δ1)

and, for at least one θ0

R(θ0, δ0) > R(θ0, δ1)
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Minimaxity & admissibility

If there exists a unique minimax estimator, this estimator is admissible.

The converse is false!

If δ0 is admissible with constant risk, δ0 is the unique minimax estimator.

The converse is false!
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Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes estimators often

constitute the class of admissible estimators

• If π is strictly positive on Θ, with

r(π) =
∫

Θ

R(θ, δπ)π(θ) dθ < ∞

and R(θ, δ), is continuous, then the Bayes estimator δπ is admissible.

• If the Bayes estimator associated with a prior π is unique, it is admissible.

Regular (6=generalized) Bayes estimators always are admissible
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Example 17 Consider x ∼ N (θ, 1) and the test of H0 : θ ≤ 0, i.e. the

estimation of

IIH0(θ)

Under the loss

(IIH0(θ)− δ(x))2 ,

the estimator (p-value)

p(x) = P0(X > x) (X ∼ N (0, 1))

= 1− Φ(x),

is Bayes under Lebesgue measure.
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Indeed

p(x) = IEπ[IIH0(θ)|x] = Pπ(θ < 0|x)

= Pπ(θ − x < −x|x) = 1− Φ(x).

The Bayes risk of p is finite and p(s) is admissible.



Decisions/Loss/Optimalities: Admissible/Losses 96

Example 18 Consider x ∼ N (θ, 1). Then δ0(x) = x is a generalized Bayes

estimator, is admissible, but

r(π, δ0) =
∫ +∞

−∞
R(θ, δ0) dθ

=
∫ +∞

−∞
1 dθ = +∞.
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Example 19 Consider x ∼ Np(θ, Ip). If

L(θ, d) = (d− ||θ||2)2

the Bayes estimator for the Lebesgue measure is

δπ(x) = ||x||2 + p.

This estimator is not admissible because it is dominated by

δ0(x) = ||x||2 − p
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3.4 Usual loss functions

3.4.1 The quadratic loss

Historically, first loss function (Legendre, Gauss)

L(θ, d) = (θ − d)2
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Proper loss

The Bayes estimator δπ associated with the prior π and with the quadratic loss is

the posterior expectation

δπ(x) = IEπ[θ|x] =

∫
Θ

θf(x|θ)π(θ) dθ∫
Θ

f(x|θ)π(θ) dθ
.
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3.4.2 The absolute error loss

Alternatives to the quadratic loss:

L(θ, d) =| θ − d |,

or

Lk1,k2(θ, d) =
{

k2(θ − d) if θ > d ,

k1(d− θ) otherwise.
(1)

The Bayes estimator associated with π and (1) is a (k2/(k1 + k2)) fractile of

π(θ|x).
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3.4.3 The 0− 1 loss

Neyman–Pearson loss for testing hypotheses

Test of H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ0.

Then

D = {0, 1}
The 0− 1 loss

L(θ, d) =
{

1− d if θ ∈ Θ0

d otherwise,
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Associated with the risk

R(θ, δ) = IEθ[L(θ, δ(x))]

=
{

Pθ(δ(x) = 0) if θ ∈ Θ0 ,

Pθ(δ(x) = 1) otherwise,

type–one and type–two errors

The Bayes estimator associated with π and with the 0− 1 loss is

δπ(x) =
{

1 if P (θ ∈ Θ0|x) > P (θ 6∈ Θ0|x),

0 otherwise,
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3.4.4 Intrinsic losses

Noninformative settings w/o natural parameterisation : the estimators should be

invariant under reparameterisation

[Ultimate invariance!]

Corresponding parameterisation-free loss functions:

L(θ, δ) = d(f(·|θ), f(·|δ)),
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Examples:

(1) the entropy distance (or Kullback–Leibler divergence)

Le(θ, δ) = IEθ

[
log

(
f(x|θ)
f(x|δ)

)]
,

(2) the Hellinger distance

LH(θ, δ) =
1
2
IEθ




(√
f(x|δ)
f(x|θ) − 1

)2

 .
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Example 20 Consider x ∼ N (θ, 1). Then

Le(θ, δ) =
1
2
IEθ[−(x− θ)2 + (x− δ)2] =

1
2
(δ − θ)2,

LH(θ, δ) = 1− exp{−(δ − θ)2/8}.

When π(θ|x) is aN (µ(x), σ2) distribution, the Bayes estimator of θ is

δπ(x) = µ(x)

in both cases.
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4 Admissibility and Complete Classes
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4.1 Admissibility of Bayes estimators

Bayes estimators may be inadmissible when the Bayes risk is infinite
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Example 21 Consider x ∼ N (θ, 1) with a conjugate prior θ ∼ N (0, σ2) and

loss

Lα(θ, δ) = eθ2/2α(θ − δ)2,

The associated generalized Bayes estimator is defined for α > σ2

σ2+1 and

δπ
α(x) =

σ2 + 1
σ2

(
σ2 + 1

σ2
− α−1

)−1

δπ(x)

=
α

α− σ2

σ2+1

δπ(x).
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The corresponding Bayes risk is

r(π) =
∫ +∞

−∞
eθ2/2αe−θ2/2σ2

dθ,

that is, is infinite for α ≤ σ2. Moreover, since δπ
α(x) = cx with c > 1 when

α > α
σ2 + 1

σ2
− 1,

δπ
α is inadmissible
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Formal admissibility result

If Θ is a discrete set and π(θ) > 0 for every θ ∈ Θ, then there exists an

admissible Bayes estimator associated with π
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4.1.1 Boundary conditions

If

f(x|θ) = h(x)eθ.T (x)−ψ(θ), θ ∈ [θ, θ̄]

and π is a conjugate prior,

π(θ|t0, λ) = eθ.t0−λψ(θ)

a sufficient condition for IEπ[∇ψ(θ)|x] to be admissible is that, for every

θ < θ0 < θ̄,

∫ θ̄

θ0

e−γ0λθ+λψ(θ) dθ =
∫ θ0

θ

e−γ0λθ+λψ(θ) dθ = +∞.
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Example 22 Consider x ∼ B(n, p).

f(x|θ) =
(

n

x

)
e(x/n)θ

(
1 + eθ/n

)−n

θ = n log(p/1− p)

Then the two integrals

∫ θ0

−∞
e−γ0λθ

(
1 + eθ/n

)λn

dθ and

∫ +∞

θ0

e−γ0λθ
(
1 + eθ/n

)λn

dθ

cannot diverge simultaneously if λ < 0.

For λ > 0, second integral divergent if λ(1− γ0) > 0 and first integral divergent if

γ0λ ≥ 0.

Admissible Bayes estimators of p

δπ(x) = a
x

n
+ b, 0 ≤ a ≤ 1, b ≥ 0, a + b ≤ 1.
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4.1.2 Differential representations

Setting of multidimensional exponential families

f(x|θ) = h(x)eθ.x−ψ(θ), θ ∈ IRp

Measure g such that

Ix(∇g) =
∫
||∇g(θ)||eθ.x−ψ(θ) dθ < +∞

Representation of the posterior mean of∇ψ(θ)

δg(x) = x +
Ix(∇g)
Ix(g)

.
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Sufficient admissibility conditions:

∫

{||θ||>1}

g(θ)
||θ||2 log2(||θ|| ∨ 2)

dθ < ∞,

∫ ||∇g(θ)||2
g(θ)

dθ < ∞,

and

∀θ ∈ Θ, R(θ, δg) < ∞,
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Consequence

If

Θ = IRp p ≤ 2

the estimator

δ0(x) = x

is admissible.

Example 23 If x ∼ Np(θ, Ip), p ≤ 2, δ0(x) = x is admissible.
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4.1.3 Recurrence conditions

Special case of Np(θ, Σ):

A generalized Bayes estimator of the form

δ(x) = (1− h(||x||))x

is

(i) inadmissible if there exist ε > 0 and K < +∞ such that, for ||x|| > K ,

||x||2h(||x||) < p− 2− ε;
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and

(ii) admissible if there exist K1 and K2 such that h(||x||)||x|| ≤ K1 for every x

and, for ||x|| > K2,

||x||2h(||x||) ≥ p− 2.

[Brown, 1971]
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General case:

Estimation of a bounded function g(θ)

For a given prior π, Markovian transition kernel

K(θ|η) =
∫

X
π(θ|x)f(x|η) dx,

The generalized Bayes estimator of g(θ) is admissible if the associated

Markov chain (θ(n)) is π-recurrent.

[Eaton, 1994]



Admissibility: Recurrence/N&S/Complete classes 119

Extension to the unbounded case , based on the (case dependent) transition kernel

T (θ|η) = Ψ(η)−1(ϕ(θ)− ϕ(η))2K(θ|η) ,

where Ψ(θ) normalizing factor

The generalized Bayes estimator of ϕ(θ) is admissible if the associated

Markov chain (θ(n)) is π-recurrent.

[Eaton, 1999]
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4.2 Necessary and sufficient admissibility conditions

Formalisation of the statement that...

...all admissible estimators are limits of Bayes estimators...
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4.2.1 Blyth’s sufficient condition

If, for an estimator δ0, there exists a sequence (πn) of generalized prior

distributions such that

(i) r(πn, δ0) is finite for every n;

(ii) for every nonempty open set C ⊂ Θ, there exist K > 0 and N such that, for

every n ≥ N , πn(C) ≥ K ; and

(iii) lim
n→+∞

r(πn, δ0)− r(πn) = 0;

then δ0 is admissible.
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Example 24 Consider x ∼ N (θ, 1) and δ0(x) = x

Choose πn as the measure with density

gn(x) = e−θ2/2n

[condition (ii) is satisfied]

The Bayes estimator for πn is

δn(x) =
nx

n + 1
,

and

r(πn) =
∫

IR

[
θ2

(n + 1)2
+

n2

(n + 1)2

]
gn(θ) dθ

=
√

2πn
n

n + 1
,

[condition (i) is satisfied]
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while

r(πn, δ0) =
∫

IR

1 gn(θ) dθ =
√

2πn.

Moreover,

r(πn, δ0)− r(πn) =
√

2πn/(n + 1)

converges to 0.

[condition (iii) is satisfied]
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4.2.2 Stein’s necessary and sufficient condition

Assumptions

(i) f(x|θ) is continuous in θ and strictly positive on Θ; and

(ii) the loss L is strictly convex, continuous and, if E ⊂ Θ is compact,

lim
‖δ‖→+∞

inf
θ∈E

L(θ, δ) = +∞.



Admissibility/N&S: Stein/Complete classes 125

Stein’s n&s condition:

δ is admissible iff there exist

1. a sequence (Fn) of increasing compact sets such that

Θ =
⋃
n

Fn,

2. a sequence (πn) of finite measures with support Fn, and

3. a sequence (δn) of Bayes estimators associated with πn

such that
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(i) there exists a compact set E0 ⊂ Θ such that infn πn(E0) ≥ 1;

(ii) if E ⊂ Θ is compact, sup
n

πn(E) < +∞;

(iii) lim
n

r(πn, δ)− r(πn) = 0; and

(iv) lim
n

R(θ, δn) = R(θ, δ).
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4.3 Complete classes

Definition 8 A class C of estimators is complete if, for every δ′ 6∈ C, there exists

δ ∈ C that dominates δ′. The class is essentially complete if, for every δ′ 6∈ C,

there exists δ ∈ C that is at least as good as δ′.
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Special case:

Θ = {θ1, θ2}, with risk set

R = {r = (R(θ1, δ), R(θ2, δ)), δ ∈ D∗},

bounded and closed from below

Lower boundary, Γ(R), provides the admissible points ofR.
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For every r ∈ Γ(R), there exists a tangent line toR going through r, with positive

slope and equation

p1r1 + p2r2 = k

Therefore r is a Bayes estimator for π(θi) = pi (i = 1, 2)
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Wald’s theorems

If Θ is finite and ifR is bounded and closed from below, then the set of Bayes

estimators constitutes a complete class

If Θ is compact and the risk setR is convex, if all estimators have a continuous risk

function, the Bayes estimators constitute a complete class.
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Extensions

If Θ not compact, in many cases, complete classes are made of generalized Bayes

estimators

Example 25 When estimating the natural parameter θ of an exponential family

x ∼ f(x|θ) = eθ·x−ψ(θ)h(x), x, θ ∈ IRk,

under quadratic loss, every admissible estimator is a generalized Bayes estimator.
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5 Bayesian Point Estimation



Bayesian Statistics/November 2, 2001 134

Posterior distribution

π(θ|x) ∝ f(x|θ)π(θ)

• extensive summary of the information available on θ

• integrate simultaneously prior information and information brought by x

• unique motor of inference
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5.1 Bayesian inference

5.1.1 MAP estimator

With no loss function, consider using the maximum a posteriori (MAP) estimator

arg max
θ

`(θ|x)π(θ)
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Motivations

• Associated with 0− 1 losses and Lp losses

• Penalized likelihood estimator

• Further appeal in restricted parameter spaces
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Example 26 Consider x ∼ B(n, p).

Possible priors:

π∗(p) =
1

B(1/2, 1/2)
p−1/2(1− p)−1/2 ,

π1(p) = 1 and π2(p) = p−1(1− p)−1 .

Corresponding MAP estimators:

δ∗(x) = max
(

x− 1/2
n− 1

, 0
)

,

δ1(x) =
x

n
,

δ2(x) = max
(

x− 1
n− 2

, 0
)

.
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Not always appropriate:

Example 27 Consider

f(x|θ) =
1
π

[
1 + (x− θ)2

]−1
,

and π(θ) = 1
2e−|θ|. The MAP estimator of θ is then always

δ∗(x) = 0
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5.1.2 Prediction

If x ∼ f(x|θ) and z ∼ g(z|x, θ), the predictive of z is

gπ(z|x) =
∫

Θ

g(z|x, θ)π(θ|x) dθ.
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Example 28 Consider the AR(1) model

xt = %xt−1 + εt εt ∼ N (0, σ2)

the predictive of xT is then

xT |x1:(T−1) ∼
∫

σ−1

√
2π

exp{−(xT−%xT−1)2/2σ2}π(%, σ|x1:(T−1))d%dσ ,

and π(%, σ|x1:(T−1)) can be expressed in closed form
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5.2 Bayesian Decision Theory

For a loss L(θ, δ) and a prior π, the Bayes rule is

δπ(x) = arg min
d

IEπ[L(θ, d)|x].

Note: Practical computation not always possible analytically.
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5.2.1 Conjugate priors

For conjugate distributions, the posterior expectations of the natural parameters can

be expressed analytically, for one or several observations.

Distribution Conjugate prior Posterior mean

Normal Normal

N (θ, σ2) N (µ, τ2)
µσ2 + τ2x

σ2 + τ2

Poisson Gamma

P(θ) G(α, β)
α + x

β + 1
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Distribution Conjugate prior Posterior mean

Gamma Gamma

G(ν, θ) G(α, β)
α + ν

β + x

Binomial Beta

B(n, θ) Be(α, β)
α + x

α + β + n

Negative binomial Beta

N eg(n, θ) Be(α, β)
α + n

α + β + x + n

Multinomial Dirichlet

Mk(n; θ1, . . . , θk) D(α1, . . . , αk)
αi + xi�P
j αj

�
+ n

Normal Gamma

N (µ, 1/θ) G(α/2, β/2)
α + 1

β + (µ− x)2
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Example 29 Consider

x1, ..., xn ∼ U([0, θ])

and θ ∼ Pa(θ0, α). Then

θ|x1, ..., xn ∼ Pa(max (θ0, x1, ..., xn), α + n)

and

δπ(x1, ..., xn) =
α + n

α + n− 1
max (θ0, x1, ..., xn).
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Even conjugate priors may lead to computational difficulties

Example 30 Consider x ∼ Np(θ, Ip) and

L(θ, d) =
(d− ||θ||2)2
2||θ||2 + p

for which δ0(x) = ||x||2 − p has a constant risk, 1

For the conjugate distributions,Np(0, τ2Ip),

δπ(x) =
IEπ[||θ||2/(2||θ||2 + p)|x]

IEπ[1/(2||θ||2 + p)|x]

cannot be computed analytically.
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5.3 The particular case of the normal model

Importance of the normal model in many fields

Np(θ, Σ)

with known Σ, normal conjugate distribution,Np(µ,A).

Under quadratic loss, the Bayes estimator is

δπ(x) = x− Σ(Σ + A)−1(x− µ)

=
(
Σ−1 + A−1

)−1 (
Σ−1x + A−1µ

)
;
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5.3.1 Estimation of variance

If

x̄ =
1
n

n∑

i=1

xi and s2 =
n∑

i=1

(xi − x̄)2

the likelihood is

`(θ, σ | x̄, s2) ∝ σ−n exp
[
− 1

2σ2

{
s2 + n (x̄− θ)2

}]

The Jeffreys prior for this model is

π∗(θ, σ) =
1
σ2

but invariance arguments lead to prefer

π̃(θ, σ) =
1
σ
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In this case, the posterior distribution of (θ, σ) is

θ|σ, x̄, s2 ∼ N
(

x̄,
σ2

n

)
,

σ2|x̄, s2 ∼ IG
(

n− 1
2

,
s2

2

)
.

• Conjugate posterior distributions have the same form

• θ and σ2 are not a priori independent.

• Requires a careful determination of the hyperparameters
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5.3.2 Linear models

Usual regression model

y = Xβ + ε, ε ∼ Nk(0,Σ), β ∈ IRp

Conjugate distributions of the type

β ∼ Np(Aθ, C),

where θ ∈ IRq (q ≤ p).

Strong connection with random-effect models

y = X1β1 + X2β2 + ε,
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Σ unknown

In this general case, the Jeffreys prior is

πJ(β, Σ) =
1

|Σ|(k+1)/2
.

likelihood

`(β, Σ|y) ∝ |Σ|−n/2 exp

{
−1

2
tr

[
Σ−1

n∑

i=1

(yi −Xiβ)(yi −Xiβ)t

]}



Inference/Decision Theory/Normal model: linear model 151

• suggests (inverse) Wishart distribution on Σ

• posterior marginal distribution on β only defined for sample size large enough

• no closed form expression for posterior marginal
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Special case: ε ∼ Nk(0, σ2Ik)

The least-squares estimator β̂ has a normal distribution

Np(β, σ2(XtX)−1)

Corresponding conjugate distributions on (β, σ2)

β|σ2 ∼ Np

(
µ,

σ2

n0
(XtX)−1

)
,

σ2 ∼ IG(ν/2, s2
0/2),
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since, if s2 = ||y −Xβ̂||2,

β|β̂, s2, σ2 ∼ Np

(
n0µ + β̂

n0 + 1
,

σ2

n0 + 1
(XtX)−1

)
,

σ2|β̂, s2 ∼ IG
(

k − p + ν

2
,
s2 + s2

0 + n0
n0+1 (µ− β̂)tXtX(µ− β̂)

2

)
.
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5.3.3 The AR(p) model

Markovian dynamic model

xt ∼ N
(

µ−
p∑

i=1

%i(xt−i − µ), σ2

)

Appeal:

• Among the most commonly used model in dynamic settings

• More challenging than the static models (stationarity constraints)

• Different models depending on the processing of the starting value x0
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Stationarity

Stationarity constraints in the prior as a restriction on the values of θ.

AR(p) model stationary iff the roots of the polynomial

P(x) = 1−
p∑

i=1

%ix
i

are all outside the unit circle
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Closed form likelihood

Conditional on the negative time values

L(µ, %1, . . . , %p, σ|x1:T , x0:(−p+1)) =

σ−T
T∏

t=1

exp



−

(
xt − µ +

p∑

i=1

%i(xt−i − µ)

)2 /
2σ2



 ,

Natural conjugate prior for θ = (µ, %1, . . . , %p, σ
2) :

a normal distribution on (µ, %1, . . . , ρp) and an inverse gamma distribution on σ2.
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Stationarity & priors

Under stationarity constraint, complex parameter space

The Durbin–Levinson recursion proposes a reparametrization from the parameters

%i to the partial autocorrelations

ψi ∈ [−1, 1]

which allow for a uniform prior.
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Transform:

0. Define ϕii = ψi and ϕij = ϕ(i−1)j − ψiϕ
(i−1)(i−j), for i > 1 and

j = 1, · · · , i− 1 .

1. Take %i = ϕpi for i = 1, · · · , p.

Different approach via the real+complex roots of the polynomial P , whose inverses

are also within the unit circle.
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Stationarity & priors (contd.)

Jeffreys’ prior associated with the stationary representation is

πJ
1 (µ, σ2, %) ∝ 1

σ2

1√
1− %2

.

Within the non-stationary region |%| > 1, the Jeffreys prior is

πJ
2 (µ, σ2, %) ∝ 1

σ2

1√
|1− %2|

√∣∣∣∣1−
1− %2T

T (1− %2)

∣∣∣∣ .

The dominant part of the prior is the non-stationary region!
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The reference prior πJ
1 is only defined when the stationary constraint holds.

Idea Symmetrise to the region |%| > 1

πB(µ, σ2, %) ∝ 1
σ2

{
1/

√
1− %2 if |%| < 1,

1/|%|
√

%2 − 1 if |%| > 1,
,

−3 −2 −1 0 1 2 3

0
1

2
3

4
5

6
7

x

pi
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5.3.4 The MA(q) model

xt = µ + εt −
q∑

j=1

ϑjεt−j , εt ∼ N (0, σ2)

Stationary but, for identifiability considerations, the polynomial

Q(x) = 1−
q∑

j=1

ϑjx
j

must have all its roots outside the unit circle.
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Example 31 For the MA(1) model, xt = µ + εt − ϑ1εt−1,

var(xt) = (1 + ϑ2
1)σ

2

It can also be written

xt = µ + ε̃t−1 − 1
ϑ1

ε̃t, ε̃ ∼ N (0, ϑ2
1σ

2) ,

Both couples (ϑ1, σ) and (1/ϑ1, ϑ1σ) lead to alternative representations of the

same model.
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Representations

x1:T is a normal random variable with constant mean µ and covariance matrix

Σ =




σ2 γ1 γ2 . . . γq 0 . . . 0 0
γ1 σ2 γ1 . . . γq−1 γq . . . 0 0

. . .

0 0 0 . . . 0 0 . . . γ1 σ2


 ,

with (|s| ≤ q)

γs = σ2

q−|s|∑

i=0

ϑiϑi+|s|γs = σ2

q−|s|∑

i=0

ϑiϑi+|s|

Not manageable in practice
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Representations (contd.)

Conditional on (ε0, . . . , ε−q+1),

L(µ, ϑ1, . . . , ϑq, σ|x1:T , ε0, . . . , ε−q+1) =

σ−T
T∏

t=1

exp




−


xt − µ +

q∑

j=1

ϑj ε̂t−j




2

/
2σ2





,

where (t > 0)

ε̂t = xt − µ +
q∑

j=1

ϑj ε̂t−j , ε̂0 = ε0, . . . , ε̂1−q = ε1−q

Recursive definition of the likelihood, still costly O(T × q)
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Representations (contd.)

State-space representation

xt = Gyyt + εt , (2)

yt+1 = Ftyt + ξt , (3)

(2) is the observation equation and (3) is the state equation
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For the MA(q) model

yt = (εt−q, . . . , εt−1, εt)′

and

yt+1 =




0 1 0 . . . 0
0 0 1 . . . 0

. . .

0 0 0 . . . 1
0 0 0 . . . 0




yt + εt+1




0
0
...

0
1




xt = µ− (ϑq ϑq−1 . . . ϑ1 −1 )yt .
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Example 32 For the MA(1) model, observation equation

xt = ( 1 0 )yt

with

yt = ( y1t y2t )′

directed by the state equation

yt+1 =
(

0 1
0 0

)
yt + εt+1

(
1
ϑ1

)
.
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Identifiability

Identifiability condition onQ(x): the ϑj ’s vary in a complex space.

New reparametrization: the ψi’s are the inverse partial auto-correlations
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6 Bayesian Calculations
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6.1 Implementation difficulties

• Computing the posterior distribution

π(θ|x) ∝ π(θ)f(x|θ)

• Resolution of

arg min
∫

Θ

L(θ, δ)π(θ)f(x|θ)dθ

• Maximisation of the marginal posterior

arg max
∫

Θ−1

π(θ|x)dθ−1
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• Computing posterior quantities

δπ(x) =
∫

Θ

h(θ) π(θ|x)dθ =

∫

Θ

h(θ) π(θ)f(x|θ)dθ
∫

Θ

π(θ)f(x|θ)dθ

• Resolution (in k) of

P (π(θ|x) ≥ k|x) = α
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Example 33 Consider

x1, . . . , xn ∼ C(θ, 1)

and θ ∼ N (µ, σ2), with known hyperparameters µ and σ2.

The posterior distribution

π(θ|x1, . . . , xn) ∝ e−(θ−µ)2/2σ2
n∏

i=1

[1 + (xi − θ)2]−1,

cannot be integrated analytically and

δπ(x1, . . . , xn) =

∫ +∞
−∞ θe−(θ−µ)2/2σ2 ∏n

i=1[1 + (xi − θ)2]−1dθ
∫ +∞
−∞ e−(θ−µ)2/2σ2 ∏n

i=1[1 + (xi − θ)2]−1dθ

requires two numerical integrations.
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Example 34 Mixture of two normal distributions

x1, . . . , xn ∼ f(x|θ) = pϕ(x; µ1, σ1) + (1− p)ϕ(x; µ2, σ2)

Prior

µi|σi ∼ N (ξi, σ
2
i /ni), σ2

i ∼ IG(νi/2, s2
i /2), p ∼ Be(α, β)

Posterior

π(θ|x1, . . . , xn) ∝
n∏

j=1

{pϕ(xj ;µ1, σ1) + (1− p)ϕ(xj ; µ2, σ2)}π(θ)

=
n∑

`=0

∑

(kt)

ω(kt)π(θ|(kt))

[O(2n)]
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For a given permutation (kt), conditional posterior distribution

π(θ|(kt)) = N
(

ξ1(kt),
σ2

1

n1 + `

)
× IG((ν1 + `)/2, s1(kt)/2)

×N
(

ξ2(kt),
σ2

2

n2 + n− `

)
× IG((ν2 + n− `)/2, s2(kt)/2)

×Be(α + `, β + n− `)
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where

x̄1(kt) = 1
`

∑`
t=1 xkt , ŝ1(kt) =

∑`
t=1(xkt − x̄1(kt))2,

x̄2(kt) = 1
n−`

∑n
t=`+1 xkt , ŝ2(kt) =

∑n
t=`+1(xkt − x̄2(kt))2

and

ξ1(kt) =
n1ξ1 + `x̄1(kt)

n1 + `
, ξ2(kt) =

n2ξ2 + (n− `)x̄2(kt)
n2 + n− `

,

s1(kt) = s2
1 + ŝ2

1(kt) +
n1`

n1 + `
(ξ1 − x̄1(kt))2,

s2(kt) = s2
2 + ŝ2

2(kt) +
n2(n− `)
n2 + n− `

(ξ2 − x̄2(kt))2,

posterior updates of the hyperparameters
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Bayes estimator of θ:

δπ(x1, . . . , xn) =
n∑

`=0

∑

(kt)

ω(kt)IEπ[θ|x, (kt)]

Too costly: 2n terms
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6.2 Classical approximation methods

6.2.1 Numerical integration

• Simpson’s method

• polynomial quadrature

∫ +∞

−∞
e−t2/2f(t) dt ≈

n∑

i=1

ωif(ti),
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where

ωi =
2n−1n!

√
n

n2[Hn−1(ti)]2

and ti is the ith zero of the nth Hermite polynomial, Hn(t).

• orthogonal bases

• wavelets

[Bumps into curse of dimen’ty]
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6.2.2 Monte Carlo methods

Approximation of the integral

I =
∫

Θ

g(θ)f(x|θ)π(θ) dθ,

should take advantage of the fact that f(x|θ)π(θ) is proportional to a density.
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If the θi’s are generated from π(θ), the average

1
m

m∑

i=1

g(θi)f(x|θi)

converges (almost surely) to I

Confidence regions can be derived from a normal approximation and the magnitude

of the error remains of order

1/
√

m,

whatever the dimension of the problem.
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Importance function

No need to simulate from π(·|x) or π: if h is a probability density,

∫

Θ

g(θ)f(x|θ)π(θ) dθ =
∫

g(θ)f(x|θ)π(θ)
h(θ)

h(θ) dθ.

[Importance function]

An approximation to IEπ[g(θ)|x] is given by

∑m
i=1 g(θi)ω(θi)∑m

i=1 ω(θi)
with ω(θi) =

f(x|θi)π(θi)
h(θi)

if

supp(h) ⊂ supp(f(x|·)π)
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Requirements

• Simulation from h must be easy

• h(θ) must be close enough to g(θ)π(θ|x)

• the variance of the importance sampling estimator must be finite
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The importance function may be π

Example 35 (Example 33 continued) Since π(θ) is the normal distribution

N (µ, σ2), it is possible to simulate a normal sample θ1, . . . , θM and to

approximate the Bayes estimator by

δ̂π(x1, . . . , xn) =
∑M

t=1 θt

∏n
i=1[1 + (xi − θt)2]−1

∑M
t=1

∏n
i=1[1 + (xi − θt)2]−1

.

May be poor when the xi’s are all far from µ
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mu

va
ria

tio
n

0 2 4 6 8 10

-0.
5

0.0
0.5

90% range of variation of the approximation for n = 10 observations from C(0, 1)
distribution and M = 1000 simulations of θ from aN (µ, 1) distribution.
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Defensive sampling:

h(θ) = ρπ(θ) + (1− ρ)π(θ|x) ρ ¿ 1

[Newton & Raftery, 1994]
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Case of the Bayes factor

ModelsM1 vs. M2 compared via

B12 =
Pr(M1|x)
Pr(M2|x)

/
Pr(M1)
Pr(M2)

=

∫
f1(x|θ1)π1(θ1)dθ1∫
f2(x|θ2)π2(θ2)dθ2

[Good, 1958 & Jeffreys, 1961]
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Solutions

• Bridge sampling:

If

π1(θ1|x) ∝ π̃1(θ1|x)

π2(θ2|x) ∝ π̃2(θ2|x)

then

B12 ≈ 1
n

n∑

i=1

π̃1(θi|x)
π̃2(θi|x)

θi ∼ π2(θ|x)

[Chen, Shao & Ibrahim, 2000]
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• Umbrella sampling:

π1(θ) = π(θ|λ1) π2(θ) = π1(θ|λ2)

= π̃1(θ)/c(λ1) = π̃2(θ)/c(λ2)

Then

∀ π(λ) on [λ1, λ2], log(c(λ2)/c(λ1)) = IE




d

dλ
log π̃(dθ)

π(λ)




and

log(B12) ≈ 1
n

n∑

i=1

d

dλ
log π̃(θi|λi)

π(λi)
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6.3 Markov chain Monte Carlo methods

Idea Given a density distribution π(·|x), produce a Markov chain (θ(t))t with

stationary distribution π(·|x)
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Warranty:

if the Markov chains produced by MCMC algorithms are irreducible, then these

chains are positive recurrent with stationary distribution π(θ|x) and ergodic.

Translation:

For k large enough, θ(k) is approximately distributed from π(θ|x), no matter what

the starting value θ(0) is.
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Practical use

• Produce an i.i.d. sample θ1, . . . , θm from π(θ|x), taking the current θ(k) as

the new starting value

• Approximate IEπ[g(θ)|x] as

1
K

K∑

k=1

g(θ(k))

[Ergodic Theorem]

• Achieve quasi-independence by batch sampling

• Construct approximate posterior confidence regions

Cπ
x ' [θ(αT/2), θ(T−αT/2)]
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6.3.1 Metropolis–Hastings algorithms

Based on a conditional density q(θ′|θ)

(i). Start with an arbitrary initial value θ(0)

(ii). Update from θ(m) to θ(m+1) (m = 1, 2, . . .) by

(a) Generate ξ ∼ q(ξ|θ(m))

(b) Define

% =
π(ξ) q(θ(m)|ξ)

π(θ(m)) q(ξ|θ(m))
∧ 1

(c) Take

θ(m+1) =
{

ξ with probability %,

θ(m) otherwise.
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Validation

Detailed balance condition

π(θ)K(θ′|θ) = π(θ′)K(θ|θ′)

with K(θ′|θ) transition kernel

K(θ′|θ) = %(θ, θ′)q(θ′|θ) +
∫

[1− %(θ, ξ)]q(ξ|θ)dξ δθ(θ′) ,

where δ Dirac mass
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Random walk Metropolis–Hastings

q(θ′|θ) = f(||θ′ − θ||)

Corresponding Metropolis–Hastings acceptance ratio

% =
π(ξ)

π(θ(m))
∧ 1.
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Example 36 For θ, x ∈ IR2,

π(θ|x) ∝ exp{−||θ − x||2/2}
p∏

i=1

exp
{ −1
||θ − µi||2

}
,

where the µi’s are given repulsive points
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Path of the Markov chain for repulsive points µj indicated by crosses, x = 0 and

p = 15 (5000 iterations).
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Pros & Cons

• Widely applicable

• limited tune-up requirements (scale calibrated thru acceptance)

• never uniformely ergodic
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Independent proposals

Take

q(θ′|θ) = h(θ′) .

More limited applicability and closer connection with iid simulation

Examples

• prior distribution

• likelihood

• saddlepoint approximation
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6.3.2 The Gibbs sampler

Takes advantage of hierarchical structures: if

π(θ|x) =
∫

π1(θ|x, λ)π2(λ|x) dλ ,

simulate from the joint distribution

π1(θ|x, λ) π2(λ|x)
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Example 37 Consider (θ, λ) ∈ IN× [0, 1] and

π(θ, λ|x) ∝
(

n

θ

)
λθ+α−1(1− λ)n−θ+β−1

Hierarchical structure:

θ|x, λ ∼ B(n, λ), λ|x ∼ Be(α, β)

Then

π(θ|x) =
(

n

θ

)
B(α + θ, β + n− θ)

B(α, β)
[beta-binomial distribution]
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Difficult to work with this marginal. For instance, computation of IE[θ/(θ + 1)|x]?

More advantageous to simulate

λ(i) ∼ Be(α, β) and θ(i) ∼ B(n, λ(i))

Then approximate IE[θ/(θ + 1)|x] as

1
m

m∑

i=1

θ(i)

θ(i) + 1
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Conditionals

Usually π2(λ|x) not available/simulable

More often, both conditional posterior distributions,

π1(θ|x, λ) and π2(λ|x, θ)

can be simulated.
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Data augmentation

Initialization: Start with an arbitrary value λ(0)

Iteration t: Given λ(t−1), generate

a. θ(t) according to π1(θ|x, λ(t−1))

b. λ(t) according to π2(λ|x, θ(t))

π(θ, λ|x) is a stationary distribution for this transition
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Example 38 (Example 37 continued) The conditional distributions are

θ|x, λ ∼ B(n, λ), λ|x, θ ∼ Be(α + θ, β + n− θ)

0 10 20 30 40 50

0.0
0.0

1
0.0

2
0.0

3
0.0

4
0.0

5

0 10 20 30 40 50

0.0
0.0

1
0.0

2
0.0

3
0.0

4
0.0

5

0 10 20 30 40 50

0.0
0.0

1
0.0

2
0.0

3
0.0

4
0.0

5

Histograms for samples of size 5000 from the beta-binomial with n = 54,

α = 3.4, and β = 5.2
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Rao–Blackwellization

Conditional structure of the sampling algorithm and the dual sample,

λ(1), . . . , λ(m),

should be exploited.

IEπ[g(θ)|x] approximated as

δ2 =
1
m

m∑

i=1

IEπ[g(θ)|x, λ(m)],
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instead of

δ1 =
1
m

m∑

i=1

g(θ(i)).

Approximation of π(θ|x) by

1
m

m∑

i=1

π(θ|x, λi)
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The general Gibbs sampler

Consider several groups of parameters, θ, λ1, . . . , λp, such that

π(θ|x) =
∫

. . .

∫
π(θ, λ1, . . . , λp|x) dλ1 · · · dλp

or simply divide θ in

(θ1, . . . , θp)
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Example 39 Consider a multinomial model,

y ∼M5 (n; a1µ + b1, a2µ + b2, a3η + b3, a4η + b4, c(1− µ− η)) ,

parametrized by µ and η, where

0 ≤ a1 + a2 = a3 + a4 = 1−
4∑

i=1

bi = c ≤ 1

and c, ai, bi ≥ 0 are known.
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This model stems from sampling according to

x ∼M9(n; a1µ, b1, a2µ, b2, a3η, b3, a4η, b4, c(1− µ− η)),

and aggregating some coordinates:

y1 = x1 + x2, y2 = x3 + x4, y3 = x5 + x6, y4 = x7 + x8, y5 = x9.

For the prior

π(µ, η) ∝ µα1−1ηα2−1(1− η − µ)α3−1,

the posterior distribution of (µ, η) cannot be derived explicitly.
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Introduce z = (x1, x3, x5, x7), which is not observed and

π(η, µ|y, z) = π(η, µ|x)

∝ µz1µz2ηz3ηz4(1− η − µ)y5+α3−1µα1−1ηα2−1 ,

where we denote the coordinates of z as (z1, z2, z3, z4). Therefore,

µ, η|y, z ∼ D(z1 + z2 + α1, z3 + z4 + α2, y5 + α3).
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Moreover,

zi|y, µ, η ∼ B
(

yi,
aiµ

aiµ + bi

)
(i = 1, 2),

zi|y, µ, η ∼ B
(

yi,
aiη

aiη + bi

)
(i = 3, 4).
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The Gibbs sampler

For a joint distribution π(θ) with full conditionals π1, . . . , πp,

Given (θ(t)
1 , . . . , θ

(t)
p ), simulate

1. θ
(t+1)
1 ∼ π1(θ1|θ(t)

2 , . . . , θ
(t)
p ),

2. θ
(t+1)
2 ∼ π2(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
p ),

...

p. θ
(t+1)
p ∼ πp(θp|θ(t+1)

1 , . . . , θ
(t+1)
p−1 ).
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6.3.3 The slice sampler

Generality of the Gibbs sampler

For

π(θ) =
k∏

i=1

$i(θ),

defined on Θ,

π(θ) =
∫ k∏

i=1

II0≤ωi≤$i(θ) dω1 · · · d ωk .
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Corresponding slice sampler

At iteration t, simulate

1. ω
(t+1)
1 ∼ U[0,$1(θ(t))]

...

k. ω
(t+1)
k ∼ U[0,$k(θ(t))]

k+1. θ(t+1) ∼ UA(t+1) , with

A(t+1) = {ξ; $i(ξ) ≥ ω
(t+1)
i , i = 1, . . . , k}.
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Example 40 Consider

π(α, η|x1, . . . , xn) ∝ αnηn+β−1

(
n∏

i=1

xi

)α

exp

{
−η

n∑

i=1

xα
i − α− ξη

}

The conditional distribution π1(η|α, x1, . . . , xn) is

G(β + n, ξ +
∑

i

xα
i )

But π2(α|η, x1, . . . , xn) is much more complex
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π2(α|η, x1, . . . , xn) can be expressed as the marginal (in α) of

αnII0≤ω0≤χα

n∏

i=1

II0≤ωi≤exp(−ηxα
i ) .

Then

α|η, ω ∼ αnIIα log(χ)≤log(ω0)

n∏

i=1

IIα log(xi)≤log{− log(ωi)/η}
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Example 41 Mixtures of two normal distributions

π(θ|x) ∝ π̃(θ|x) = π(θ)
n∏

i=1

{pϕ(xi; µ1, σ1) + (1− p)ϕ(xi;µ2, σ2)} ,

Simulating from θ ∼ Uπ̃(θ|x)≥ω . is impossible

Instead, introduce n auxiliary variables ωi so that

π(θ|x1, . . . , xn) ∝ π(θ)
n∏

i=1

∫
IIpϕ(xi;µ1,σ1)+(1−p)ϕ(xi;µ2,σ2)≥ωi≥0dωi
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6.3.4 The impact on Bayesian Statistics

• Radical modification of the way people work with models and prior assumptions

• Allows for much more complex structures:

– use of graphical models

– exploration of latent variable models

• Removes the need for analytical processing

• Boosted hierarchical modeling

• Enables (truly) Bayesian model choice
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6.4 An application to mixture estimation

Use of the missing data representation

zj |θ ∼ Mp(1; p1, . . . , pk) ,

xj |zj , θ ∼ N
(

k∏

i=1

µ
zij

i ,
k∏

i=1

σ
2zij

i

)
.
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Corresponding conditionals (Gibbs)

zj |xj , θ ∼Mk(1; p1(xj , θ), . . . , pk(xj , θ)),

with (1 ≤ i ≤ k)

pi(xj , θ) =
piϕ(xj ; µi, σi)∑k

t=1 ptϕ(xj ; µt, σt)
and

µi|x, z, σi ∼ N (ξi(x, z), σ2
i /(n + σ2

i )),

σ−2
i |x, z ∼ G

(
νi + ni

2
,
1
2

[
s2

i + ŝ2
i (x, z) +

nimi(z)
ni + mi(z)

(x̄i(z)− ξi)2
])

,

p|x, z ∼ Dk(α1 + m1(z), . . . , αk + mk(z)),
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where

mi(z) =
n∑

j=1

zij , x̄i(j) =
1

mi(z)

n∑

j=1

zijxj ,

and

ξi(x, z) =
niξi + mi(z)x̄i(z)

ni + mi(z)
, ŝ2

i (x, z) =
n∑

j=1

zij(xj − x̄i(z))2.
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Properties

• Slow moves sometimes

• Large increase in dimension, order O(n)

• Good theoretical properties (Duality principle)
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Example — Galaxy benchmark (k = 4)
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Random walk Metropolis–Hastings

q(θ∗t |θt−1) = Ψ(θ∗t − θt−1)

ρ =
π(θ∗t |x1, . . . , xn)

π(θt−1|x1, . . . , xn)
∧ 1
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Properties

• Avoids completion

• Available (Normal vs. Cauchy vs... moves)

• Calibrated against acceptance rate

• Depends on parameterisation

λj −→ log λj pj −→ log(pj/1− pk)
or

θi −→ exp θi

1 + exp θi
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Example — Galaxy benchmark (k = 4)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 100 200 300 400 500

−4
−2

0
2

4

0 100 200 300 400 500

0.
5

1.
5

2.
5



Difficulties/Classics/MCMC/Mixtures 228

Average density

data

Re
lat

ive
 F

re
qu

en
cy

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8



Difficulties/Classics/MCMC/Mixtures 229

Example — Simulated sample

0.5N (0, 1) + 0.5N (µ, σ2)
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7 Hierarchical and Empirical Bayes Extensions, and

the Stein Effect



Bayesian Statistics/November 2, 2001 231

The Bayesian analysis is sufficiently reductive to produce effective decisions, but

this efficiency can also be misused.

The prior information is rarely rich enough to define a prior distribution exactly.

Uncertainty must be included within the Bayesian model:

• Further prior modelling

• Upper and lower probabilities[Dempster-Shafer]

• Imprecise probabilities [Walley]
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7.1 Hierarchical Bayes analysis

Decomposition of the prior distribution into several conditional levels of distributions

Often two levels: the first-level distribution is generally a conjugate prior, with

parameters distributed from the second-level distribution

Real life motivations (multiple experiments, meta-analysis, ...)
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7.1.1 Hierarchical models

Definition 9 A hierarchical Bayes model is a Bayesian statistical model,

(f(x|θ), π(θ)), where

π(θ) =
∫

Θ1×...×Θn

π1(θ|θ1)π2(θ1|θ2) · · ·πn+1(θn) dθ1 · · · dθn+1.

The parameters θi are called hyperparameters of level i (1 ≤ i ≤ n).
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Example 42 Experiment where rats are intoxicated by a substance, then treated

by either a placebo or a drug:

xij ∼ N (θi, σ
2
c ), 1 ≤ j ≤ Jc

i , control

yij ∼ N (θi + δi, σ
2
a), 1 ≤ j ≤ Ja

i , intoxication

zij ∼ N (θi + δi + ξi, σ
2
t ), 1 ≤ j ≤ J t

i , treatment

Additional variable wi, equal to 1 if the rat is treated with the drug, and 0 otherwise.
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Prior distributions (1 ≤ i ≤ I),

θi ∼ N (µθ, σ
2
θ), δi ∼ N (µδ, σ

2
δ ),

and

ξi ∼ N (µP , σ2
P ) or ξi ∼ N (µD, σ2

D),

depending on whether the ith rat is treated with a placebo or a drug.

Hyperparameters of the model,

µθ, µδ, µP , µD, σc, σa, σt, σθ, σδ, σP , σD ,

associated with Jeffreys’ noninformative priors.
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7.1.2 Justifications

(i). Objective reasons based on prior information

Example 43 (Example 42 continued) Alternative prior

δi ∼ pN (µδ1, σ
2
δ1) + (1− p)N (µδ2, σ

2
δ2),

allows for two possible levels of intoxication.
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(ii). Separation of structural information from subjective information

Example 44 Uncertainties about generalized linear models

yi|xi ∼ exp{θi · yi − ψ(θi)} , ∇ψ(θi) = IE[yi|xi] = h(xt
iβ) ,

where h is the link function

The linear constraint∇ψ(θi) = h(xt
iβ) can move to an higher level of the

hierarchy,

θi ∼ exp {λ [θi · ξi − ψ(θi)]}
with IE[∇ψ(θi)] = h(xt

iβ) and

β ∼ Nq(0, τ2Iq)
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(iii). In noninformative settings, compromise between the Jeffreys

noninformative distributions, and the conjugate distributions.

(iv). Robustification of the usual Bayesian analysis from a frequentist point of

view

(v). Often simplifies Bayesian calculations



HBA: Condit’al/EBA 239

7.1.3 Conditional decompositions

Easy decomposition of the posterior distribution

For instance, if

θ|θ1 ∼ π1(θ|θ1), θ1 ∼ π2(θ1),

then

π(θ|x) =
∫

Θ1

π(θ|θ1, x)π(θ1|x) dθ1,
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where

π(θ|θ1, x) =
f(x|θ)π1(θ|θ1)

m1(x|θ1)
,

m1(x|θ1) =
∫

Θ

f(x|θ)π1(θ|θ1) dθ,

π(θ1|x) =
m1(x|θ1)π2(θ1)

m(x)
,

m(x) =
∫

Θ1

m1(x|θ1)π2(θ1) dθ1.
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Moreover, this decomposition works for the posterior moments, that is, for every

function h,

IEπ[h(θ)|x] = IEπ(θ1|x) [IEπ1 [h(θ)|θ1, x]] ,

where

IEπ1 [h(θ)|θ1, x] =
∫

Θ

h(θ)π(θ|θ1, x) dθ.
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Example 45 (Example 42 continued) The posterior distribution of the complete

parameter vector is given by

π((θi, δi, ξi)i, µθ, . . . , σc, . . . |D) ∝
I∏

i=1

{
exp−{(θi − µθ)2/2σ2

θ + (δi − µδ)2/2σ2
δ}

Jc
i∏

j=1

exp−{(xij − θi)2/2σ2
c}

Ja
i∏

j=1

exp−{(yij − θi − δi)2/2σ2
a}

Jt
i∏

j=1

exp−{(zij − θi − δi − ξi)2/2σ2
t }

}

∏

`i=0

exp−{(ξi − µP )2/2σ2
P }

∏

`i=1

exp−{(ξi − µD)2/2σ2
D}

σ
−Pi Jc

i−1
c σ

−Pi Ja
i −1

a σ
−Pi Jt

i−1
t (σθσδ)−I−1σ−ID−1

D σ−IP−1
P ,
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Local conditioning property

For the hierarchical model

π(θ) =
∫

Θ1×...×Θn

π1(θ|θ1)π2(θ1|θ2) · · ·πn+1(θn) dθ1 · · · dθn+1.

we have

π(θi|x, θ, θ1, . . . , θn) = π(θi|θi−1, θi+1)

with the convention θ0 = θ and θn+1 = 0.
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7.1.4 Computational issues

Rarely an explicit derivation of the corresponding Bayes estimators

Natural solution in hierarchical settings: use a simulation-based approach exploiting

the hierarchical conditional structure

Example 46 (Example 42 continued) The full conditional distributions

correspond to standard distributions and Gibbs sampling applies.
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1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0
20

40
60

80
10

012
0

control

 

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

0
20

40
60

80
10

0
14

0

intoxication

 
-1 0 1 2

0
50

10
01

50
20

02
50

30
0

placebo

 

0 1 2 3

0
50

10
01

50
20

02
50

drug
 

Posteriors of the effects



HBA: Comput’al/EBA 247

µδ µD µP µD − µP

Probability 1.00 0.9998 0.94 0.985

Confidence [-3.48,-2.17] [0.94,2.50] [-0.17,1.24] [0.14,2.20]

Posterior probabilities of significant effects
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7.1.5 Hierarchical extensions for the normal model

For

x ∼ Np(θ, Σ) , θ ∼ Np(µ, Σπ)

the hierarchical Bayes estimator is

δπ(x) = IEπ2(µ,Σπ|x)[δ(x|µ, Σπ)],

with

δ(x|µ, Σπ) = x− ΣW (x− µ),

W = (Σ + Σπ)−1,

π2(µ, Σπ|x) ∝ (detW )1/2 exp{−(x− µ)tW (x− µ)/2}π2(µ, Σπ).
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Example 47 Consider the exchangeable hierarchical model

x|θ ∼ Np(θ, σ2
1Ip),

θ|ξ ∼ Np(ξ1, σ2
πIp),

ξ ∼ N (ξ0, τ
2),

where 1 = (1, . . . , 1)t ∈ IRp. In this case,

δ(x|ξ, σπ) = x− σ2
1

σ2
1 + σ2

π

(x− ξ1),
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π2(ξ, σ2
π|x) ∝ (σ2

1 + σ2
π)−p/2 exp{− ‖x− ξ1‖2

2(σ2
1 + σ2

π)
}e−(ξ−ξ0)

2/2τ2
π2(σ2

π)

∝ π2(σ2
π)

(σ2
1 + σ2

π)p/2
exp

{
− p(x̄− ξ)2

2(σ2
1 + σ2

π)
− s2

2(σ2
1 + σ2

π)
− (ξ − ξ0)2

2τ2

}

with s2 =
∑

i(xi − x̄)2. Then

δπ(x) = IEπ2(σ
2
π|x)

[
x− σ2

1

σ2
1 + σ2

π

(x− x̄1)− σ2
1 + σ2

π

σ2
1 + σ2

π + pτ2
(x̄− ξ0)1

]

and

π2(σ2
π|x) ∝

τ exp− 1
2

[
s2

σ2
1 + σ2

π

+
p(x̄− ξ0)2

pτ2 + σ2
1 + σ2

π

]

(σ2
1 + σ2

π)(p−1)/2(σ2
1 + σ2

π + pτ2)1/2
π2(σ2

π).
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Notice the particular form of the hierarchical Bayes estimator

δπ(x) = x− IEπ2(σ
2
π|x)

[
σ2

1

σ2
1 + σ2

π

]
(x− x̄1)

−IEπ2(σ
2
π|x)

[
σ2

1 + σ2
π

σ2
1 + σ2

π + pτ2

]
(x̄− ξ0)1.

[Double shrinkage]
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7.1.6 The Stein effect

If a minimax estimator is unique , it is admissible

Converse If a constant risk minimax estimator is inadmissible, every other minimax

estimator has a uniformly smaller risk (!)
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The Stein Paradox:

If a standard estimator δ∗(x) = (δ0(x1), . . . , δ0(xp)) is evaluated under

weighted quadratic loss
p∑

i=1

ωi(δi − θi)2,

with ωi > 0 (i = 1, . . . , p), there exists p0 such that δ∗ is not admissible for

p ≥ p0, although the components δ0(xi) are separately admissible to

estimate the θi’s .
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James–Stein estimator

In the normal case,

δJS(x) =
(

1− p− 2
||x||2

)
x,

dominates δ0(x) = x under quadratic loss for p ≥ 3, that is,

p = IEθ[||δ0(x)− θ||2] > IEθ[||δJS(x)− θ||2].

And

δ+
c (x) =

(
1− c

||x||2
)+

x

=
{

(1− c
||x||2 )x if ||x||2 > c,

0 otherwise,

improves on δ0 when

0 < c < 2(p− 2)
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Universality

• Other distributions than the normal distribution

• Other losses other than the quadratic loss

• Connections with admissibility

• George’s multiple shrinkage

• Robustess against distribution

• Applies for confidence regions

• Applies for accuracy (or loss) estimation

• Cannot occur in finite parameter spaces
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A general Stein-type domination result

Consider z = (xt, yt)t ∈ IRp, with distribution

z ∼ f(||x− θ||2 + ||y||2),

and x ∈ IRq , y ∈ IRp−q .

δh(z) = (1− h(||x||2, ||y||2))x

dominates δ0 under quadratic loss if there exist α, β > 0 such that:

(1) tαh(t, u) is a nondecreasing function of t for every u;

(2) u−βh(t, u) is a nonincreasing function of u for every t; and

(3) 0 ≤ (t/u)h(t, u) ≤ 2(q − 2)α
p− q − 2 + 4β

.
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7.1.7 Optimality of hierarchical Bayes estimators

Consider

x ∼ Np(θ, Σ)

where Σ is known.

Prior distribution on θ is θ ∼ Np(µ,Σπ).

The prior distribution π2 of the hyperparameters

(µ, Σπ)

is decomposed as

π2(µ, Σπ) = π1
2(Σπ|µ)π2

2(µ).
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In this case,

m(x) =
∫

IRp

m(x|µ)π2
2(µ) dµ,

with

m(x|µ) =
∫

f(x|θ)π1(θ|µ, Σπ)π1
2(Σπ|µ) dθ dΣπ.
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Moreover, the Bayes estimator

δπ(x) = x + Σ∇ log m(x)

can be written

δπ(x) =
∫

δ(x|µ)π2
2(µ|x) dµ,

with

δ(x|µ) = x + Σ∇ log m(x|µ),

π2
2(µ|x) =

m(x|µ)π2
2(µ)

m(x)
.
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A sufficient condition

An estimator δ is minimax under the loss

LQ(θ, δ) = (θ − δ)tQ(θ − δ).

if it satisfies

R(θ, δ) = IEθ[LQ(θ, δ(x))] ≤ tr(ΣQ)
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A sufficient condition (contd.)

If m(x) satisfies the three conditions

(1) IEθ‖∇ log m(x)‖2 < +∞; (2) IEθ

∣∣∣∣
∂2m(x)
∂xi∂xj

/
m(x)

∣∣∣∣ < +∞;

and (1 ≤ i ≤ p)

(3) lim
|xi|→+∞

∣∣∇ log m(x)
∣∣ exp{−(1/2)(x− θ)tΣ−1(x− θ)} = 0,
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the unbiased estimator of the risk of δπ is given by

Dδπ(x) = tr(QΣ)

+
2

m(x)
tr(Hm(x)Q̃)− (∇ log m(x))tQ̃(∇ log m(x))

where

Q̃ = ΣQΣ, Hm(x) =
(

∂2m(x)
∂xi∂xj

)

and...



HBA: Optimality/EBA 263

δπ is minimax if

div
(
Q̃∇

√
m(x)

)
≤ 0,

When Σ = Q = Ip, this condition is

∆
√

m(x) =
n∑

i=1

∂2

∂x2
i

(
√

m(x)) ≤ 0

[
√

m(x) superharmonic]
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Superharmonicity condition

δπ is minimax if

div
(
Q̃∇m(x|µ)

)
≤ 0.

N&S condition that does not depend on π2
2(µ)!
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7.2 The empirical Bayes alternative

Strictly speaking, not a Bayesian method !

(i) can be perceived as a dual method of the hierarchical Bayes analysis;

(ii) asymptotically equivalent to the Bayesian approach;

(iii) usually classified as Bayesian by others; and

(iv) may be acceptable in problems for which a genuine Bayes modeling is too

complicated/costly.
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7.2.1 Parametric empirical Bayes

When hyperparameters from a conjugate prior π(θ|λ) are unavailable, estimate

these hyperparameters from the marginal distribution

m(x|λ) =
∫

Θ

f(x|θ)π(θ|λ) dθ

by λ̂(x) and to use π(θ|λ̂(x), x) as a pseudo-posterior
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Fundamental ad-hocquery

Which estimate λ̂(x) for λ ?

Moment method or maximum likelihood or Bayes or &tc...
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Example 48 Consider xi distributed according to P(θi) (i = 1, . . . , n). When

π(θ|λ) is Exp(λ),

m(xi|λ) =
∫ +∞

0

e−θ θxi

xi!
λe−θλdθ

=
λ

(λ + 1)xi+1
=

(
1

λ + 1

)xi λ

λ + 1
,

i.e. xi|λ ∼ Geo(λ/λ + 1). Then

λ̂(x) = 1/x̄

and the empirical Bayes estimator of θn+1 is

δEB(xn+1) =
xn+1 + 1

λ̂ + 1
=

x̄

x̄ + 1
(xn+1 + 1),
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7.2.2 Empirical Bayes justifications of the Stein effect

A way to unify the different occurrences of this paradox and show its Bayesian roots



HBA/EBA: Justification 270

a. Point estimation

Example 49 Consider x ∼ Np(θ, Ip) and θi ∼ N (0, τ2). The marginal

distribution of x is then

x|τ2 ∼ Np(0, (1 + τ2)Ip)

and the maximum likelihood estimator of τ2 is

τ̂2 =
{

(||x||2/p)− 1 if ||x||2 > p,

0 otherwise.

The corresponding empirical Bayes estimator of θi is then

δEB(x) =
τ̂2x

1 + τ̂2

=
(

1− p

||x||2
)+

x.

[truncated James–Stein]
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Normal model

x|θ ∼ Np(θ, Λ),

θ|β, σ2
π ∼ Np(Zβ, σ2

πIp),

with Λ = diag(λ1, . . . , λp) and Z a (p× q) full rank matrix.

The marginal distribution of x is

xi|β, σ2
π ∼ N (z′iβ, σ2

π + λi)

and the posterior distribution of θ is

θi|xi, β, σ2
π ∼ N ((1− bi)xi + biz

′
iβ, λi(1− bi)) ,

with bi = λi/(λi + σ2
π).
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If

λ1 = . . . = λn = σ2

the best equivariant estimators of β and b are given by

β̂ = (ZtZ)−1Ztx and b̂ =
(p− q − 2)σ2

s2
,

with s2 =
∑p

i=1(xi − z′iβ̂)2.

The corresponding empirical Bayes estimator of θ are

δEB(x) = Zβ̂ +

(
1− (p− q − 2)σ2

||x− Zβ̂||2

)
(x− Zβ̂),

which is of the form of the general Stein estimators.
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When the means are assumed to be identical (exchangeability), the matrix Z

reduces to the vector 1 and β ∈ IR

The empirical Bayes estimator is then

δEB(x) = x̄1 +
(

1− (p− 3)σ2

||x− x̄1||2
)

(x− x̄1).
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b. Variance evaluation

Estimation of the hyperparameters β and σ2
π considerably modifies the behavior of

the procedures.

Point estimation generally efficient, but estimation of the posterior variance of

π(θ|x, β, b) by the empirical variance,

var(θi|x, β̂, b̂)

induces an underestimation of this variance
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Morris’ correction

δEB(x) = x− B̃(x− x̄1),

V EB
i (x) =

(
σ2 − p− 1

p
B̃

)
+

2
p− 3

b̂(xi − x̄)2,

with

b̂ =
p− 3
p− 1

σ2

σ2 + σ̂2
π

, σ̂2
π = max

(
0,
||x− x̄1||2

p− 1
− σ2

π

)

and

B̃ =
p− 3
p− 1

min
(

1,
σ2(p− 1)
||x− x̄1||2

)
.
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8 A Defense of the Bayesian Choice
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Unlimited range of applications

• artificial intelligence

• biostatistic

• econometrics

• epidemiology

• environmetrics

• finance
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• genomics

• geostatistics

• image processing and pattern recognition

• neural networks

• signal processing

• Bayesian networks
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(1). Choosing a probabilistic representation

Bayesian Statistics appears as the calculus of uncertainty

Reminder:

A probabilistic model is nothing but an interpretation of a given phenomenon
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(2). Conditioning on the data

At the basis of statistical inference lies an inversion process between cause and

effect. Using a prior distribution brings a necessary balance between

observations and parameters and enable to operate conditional upon x
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(3). Exhibiting the true likelihood

Provides a complete quantitative inference on the parameters and predictive

that points out inadequacies of frequentist statistics, while implementing the

Likelihood Principle.
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(4). Using priors as tools and summaries

The choice of a prior distribution π does not require any kind of belief in this

distribution: rather consider it as a tool that summarizes the available prior

information and the uncertainty surrounding this information
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(5). Accepting the subjective basis of knowledge

Knowledge is a critical confrontation between a prioris and experiments.

Ignoring these a prioris impoverishes analysis.



Bayesian Statistics/November 2, 2001 284

We have, for one thing, to use a language and our language is entirely

made of preconceived ideas and has to be so. However, these are

unconscious preconceived ideas, which are a million times more dangerous

than the other ones. Were we to assert that if we are including other

preconceived ideas, consciously stated, we would aggravate the evil! I do not

believe so: I rather maintain that they would balance one another.

Henri Poincaré, 1902
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(6). Choosing a coherent system of inference

To force inference into a decision-theoretic mold allows for a clarification of the

way inferential tools should be evaluated, and therefore implies a conscious

(although subjective) choice of the retained optimality.

Logical inference process Start with requested properties, i.e. loss function

and prior distribution, then derive the best solution satisfying these properties.



Bayesian Statistics/November 2, 2001 286

(7). Looking for optimal frequentist procedures

Bayesian inference widely intersects with the three notions of minimaxity,

admissibility and equivariance. Looking for an optimal estimator most often

ends up finding a Bayes estimator.

Optimality is easier to attain through the Bayes “filter”.
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(8). Solving the actual problem

Frequentist methods justified on a long-term basis, i.e., from the statistician

viewpoint. From a decision-maker’s point of view, only the problem at hand

matters! That is, he/she calls for an inference conditional on x.
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(9). Providing a universal system of inference

Given the three factors

(X , f(x|θ), (Θ, π(θ)), (D,L(θ, d)) ,

the Bayesian approach validates one and only one inferential procedure
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(10). Computing procedures as a minimization problem

Bayesian procedures are easier to compute than procedures of alternative

theories, in the sense that there exists a universal method for the computation of

Bayes estimators

In practice, the effective calculation of the Bayes estimators is often more

delicate but this defect is of another magnitude.


