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1. The Math and the Philosophy (Bayes’ Theorem 0 Bayesianism)

Bayes theorem is a consequence of the definition of conditiona probability. However, this
way of putting things tends to concedl a proviso that needs to be recognized. What istrue isthat

Pr(H *O) = Pr(O * H)Pr(H)/Pr(O),
if each quantity mentioned in the theorem is well-defined.

It isnot inevitable that dl propositions should have probabilities. That depends on what one
means by probability, a point to which I'll return. The clam that al propositions have probabilitiesisa
philosophica doctrine, not atheorem of mathematics. Thisis where Bayesianiam begins and Bayes
theorem leaves off. But thereis more to Bayesaniam that this. Bayesianism, in its strongest
formulation, maintains not just that propositions have probabilities, but that dl epistemologica concepts
that bear on empirica inquiry can be understood in terms of the probabilistic relationships described by
Bayes stheorem. Of course, more modest Bayesianisms aso can be contemplated.

Asanillugration of what Bayesanism amounts to, consder the continuing philosophica
puzzlement over the epistemic sgnificance of amplicity. Scientists and philosophers often maintain thet
amplicity or paramony isrdevant to evaduating the plaughbility of hypotheses. The chdlengeto
Bayesaniam isto map thisinformd tak of plausibility onto forma tak of probability. More specificaly,
adouble gpplication of Bayes theorem yidds the following comparative principle:

Pr(H1*O) > Pr(H2 *O) if and only if Pr(O *H1)Pr(H1) > Pr(O * H2)Pr(H2).

If “more plausble’ isinterpreted to mean higher posterior probability, then there are just two
ingredients that Bayesianism getsto use in explaining what makes one hypothesis more plausible than
another. Thismeansthat if Smplicity does influence plausbility, it must do so viathe prior probabilities
or viathelikelihoods! If the rdevance of Smplicity cannot be accommodated in one of these two
ways, then either smplicity is episemicaly irrdevant or (strong) Bayesianism is mistaken.?

2. The Usual Objection — Priors



The standard objection to Bayesianism isto my mind correct. It often does not make
sense to talk about propositions having objective prior probabilities. Thisis especidly clear in the
case of hypotheses that attempt to specify laws of nature. Newton's universal law of gravitation, when
suitably supplemented with plausible background assumptions, can be said to confer probabilities on
observations. But what does it mean to say that the law has a probability in the light of those
observations? More puzzling il istheideathat it has a probability before any observations are taken
into account. If God chose the laws of nature by drawing dipsof paper from an urn, it would make
sense to say that Newton’s law has an objective prior. But no one believes this process model, and
nothing Smilar seems remotdy plausble.

Bayesians used to reply to this chalenge by trying to specify a sengble verson of the Principle
of Indifference. This hasturned out to be adead end. The problem isthat there is no unique way to
trandate ignorance into an assgnment of priors. Consider my garden, which is a square plot of land
that is between 10 and 20 feet on aside. Based on thisinformation, whet is the probability that the
garden is between 10 and 15 feet on each Sde? 1t might seem naturd to say that every length between
10 and 20 feet hasthe same probability (dengty), in which case the probability is Y2 that each Sdeis
between 10 and 15 feet . However, the information | gave you is equivaent to saying that the garden
has an areathat is between 100 and 400 square feet. This description makes it sound natura to say
that every area between 100 and 400 square feet has the same probability, in which case the
probability is ¥z that the areais between 100 and 250 square feet. However, this entails that the
probability is %2 that the square is between 10 and %250 = 15.8 feet on aside. Applying the principle
smultaneoudy to length and to arealeads to contradiction. If the principleisto gpply to just one of
these, which should it be? No satisfactory answer has ever been provided.

Most contemporary Bayesians have given up on objective Bayesianism, and have gone the
subjective route. If Newton's law of gravitation does not have an objective prior probability, perhaps
each agent has a subjective degree of beief in that proposition before the evidence artsto roll in. If
point vaues cannot be assigned to these degrees of belief, perhaps they can be said to fdl in reasonably
well-defined intervals. There are interesting questions to be addressed here concerning this
psychologica hypothesis. But even supposing that agents have subjective degrees of belief, my
problem with subjective Bayesianism isthat subjective prior probabilities do not have probative force.

To explain what | mean by this, | want to examine the fairly slandard evolutionary idea thet the
(near) universdity of the genetic code is evidence that al organisms now dive trace back to asingle
common ancestor. Crick (1968) argued that the code now in useis a“frozen accident” —which
nucleotide triplet codes for which amino acid is functiondly arbitrary. If thisisright, it is dear why the
universdity of the code favors the hypothesis of one common ancestor over the hypothesis that current
life traces back to twenty-seven separate sart-ups. The evidence discriminates between the two
hypotheses in this way because there is a likelihood inequdlity:

Pr(the codeis universal *one common ancestor) >



Pr(the codeis universal * 27 mutualy unrelated groups).

Thisreasoning is grounded in objective (if not incontrovertible) considerations about the evolutionary
process. What would be added to this if one specified one's subjective degrees of prior beief in the
two hypotheses? People may have different fedings here. And even if people have the samefeding, |
don’'t see why that common fedling is epistemologically relevant. |f scienceis about the objective and
public evauation of hypotheses, these subjective fedings do not have scientific standing.®> When
scientists read research papers, they want information about the phenomena under study, not
autobiographical remarks about the authors of the study. A report of the author’ s subjective posterior
probabilities blends these two inputs together. Thisiswhy it would be better to expunge the subjective
element and |et the objective likelihoods spesk for themselves.

| am not suggesting that we should avoid Bayesian thinking even in the privacy of our own
homes. If you have a subjective degree of belief in a hypothesis, by al means use Bayes theorem to
update that degree of belief as you obtain new evidence. For those of uswho fed at alossto say
anything about the plausibility that many hypotheses have in the aosence of evidence, thisis an invitation
we will want to decline. However, the most important point is that when opinions clash, the
disagreement cannot be resolved by pointing to the fact that different agents have different subjective
priors. If the disagreement boils down to this, the agents have smply agreed to disagree.

Consgtent with this objection to (strong) Bayesianism, there remains an important domain of
scientific problems in which Bayesaniam is entirely legitimate. When the hypotheses under
consideration describe possible outcomes of a chance process (Hacking 1965, Edwards 1972), it can
make perfect sense to talk about objective prior and posterior probabilities. If you draw at random
from a standard deck of cards, the probability that you'll draw the six of spadesis 1/52. Thisisa“vdid
prior”, but not because it is obtained a priori from some verson of the Principle of Indifference, and
not because it reports your subjective degree of belief. The prior islegitimate because it isbased on
empirica information about the process a work.*  There are many contexts in which Bayesianism has
important applications -- medica diagnosis and lega proceedings provide plenty of examples. My
point isjus that Bayesianiam can't be the whole story about scientific inference.

3. The Retreat to Likelihoodism

As the example about the universdity of the genetic code suggests, likelihoods are often more
objective than prior probabilities. This makesit attractive to regard likelihood as an epistemology unto
itsdlf (Edwards 1972, Roydl 1997). In doing so, oneis changing the question one expectsone's
epistemology to answer. As Royal points out, likelihoods don't tell you what to believe or how to act
or which hypotheses are probably true; they merely tell you how to compare the degree to which the
evidence supports the various hypotheses you wish to consider.



Likeihoodisn? is sometimes criticized for entailing that perfectly absurd hypotheses often have
likelihoods that cannot be bettered. If you draw the six of spades from adeck of cards,
the hypothesis that this was due to the intervention of an evil demon bent on having you draw that very
card has alikdihood of unity, but few of uswould regard this hypothesis as very plausble. Doesn't it
sound strange to say that your drawing the six of spades supports the demon hypothesis more than it
supports the hypothesis that the card was drawn at random from anorma deck? Y et thisis precisely
what likelihoodism assarts.

Whatever the merits of this objection, it is not something that a Bayesian should embrace. The
reason is that Bayes s theorem tells us that the observation of the Six of spades confirms the demon
hypothess, in the sense that it raisesits probability. Thisisthe familiar point thet when a hypothess
entails an observation, and the observationa outcome was not certain to occur, and the hypothesis's
prior probability is neither zero nor one® the observation confirms. It is entirely consistent with this
point that the probakility of the demon hypothesis remains very low and the norma hypothesis
probability remains very high. But if confirmation concerns the diachronic question of how probabilities
change rather than the synchronic question of what a probability’ s absolute value is, then Bayesans
have to concede that the observation of the six of gpades confirms the demon hypothesis. If so, they
should not cast ajaundiced eye on the likdihoodist’s claim about differentia support.

Likelihoodists can and should admit that the demon hypothesisisimplausible or absurd,
notwithstanding the fact that it has alikeihood of unity relaive to the single observation under
condderation. It'sjugt that likelihoodists decline to represent this epistemic judgment by assigning the
hypothesis a probability. Likelihoodist epistemology is modest in its ambitions; support gets
represented formdly, but plausibility doesnot. It thereby contrasts with (strong) Bayesianiam, which,
as|’ve explained, amsto characterize all genuine epistemic concepts.

There€' s another Bayesian criticism of likelihoodism that | want to consder. Thisistheideathat
likelihoods have epistemic significance only when they are used in the context of Bayes theorem.
Bayesans sometimes present this claim asif it were obvious, but it isn't. Why is Edwards (1972, p.
100) wrong when he endorses Fisher’'s (1938) view that likelihood isa“primitive postulate’ -- it stands
on its own and requires no more ultimate judtification? Furthermore, it should be clear thet the
likelihood principle can be evauated in the same way that any philosophica explication can be— by
seding if it accords with and systematizes intuitions about examples. Findly, | should add that there are
nonBayesian inferentia frameworks in which likelihood plays a prominent role (Forster and Sober
2002); I'll mention one of these at the end of this paper.

4. The Trouble with Likelihoods

Likelihoodism's objection to Bayesianism comes back to haunt it when one considers
composite hypotheses. A smple gatigtica hypothes's confers a sharp probability on each possible



observation. Composite hypotheses do not. When composite hypotheses have objective likelihoods,
their values are often unknown; often they cannot be said to have objective likelihoods at dl.

Compoasite hypotheses are frequently digunctions —whether finite or infinite— of smple
hypotheses. When thisis so, their likelihoods are averages. Consder, for example, how the standard
Menddlian mode of reproduction may be used to compute the likelihoods of different hypotheses about
the genotypes of an organism'’s parents, given an observation of the offspring’ s genotype:

Pr(Offspring isAa*Parentsare AA and AA ) =0
Pr(Offspring is Aa*Parents are AA and Aa) = Y2
Pr(Offspring isAa*Parents are AA and a@) = 1.0
Pr(Offspring is Aa*Parents are Aaand Aa) = %2
Pr(Offspring is Aa*Parents are Aaand aa) = %
Pr(Offspring is Aa *Parents are aa and aa) = 0.

Hypotheses about the genotype of the parentd pair are smple. However, the hypothesis (H1) that the
offspring’s mother is AA is composte; its likelihood is an average:

Pr(Offspring isAa*Mother isAA) =

Pr(Offgpring isAa*Mother isAA & Father is AA)Pr(Father isAA *Mother isAA) +
Pr(Offspring is Aa*Mother is AA & Father is Ag)Pr(Father is Aa*Mother isAA) +
Pr(Offgpring isAa*Mother isAA & Father is ag)Pr(Father isaa*Mother isAA) =

Ow, + (2w, + (Dws  (wherew, + w, + wz = 1.0).

The hypothess H1 that the mother was AA isadigunction of Smple hypotheses— ether she was AA
and the father was AA, or shewas AA and the father was Aa, or she was AA and the father was aa.
The same point holds with respect to the hypothesis (H2) that the mother was a heterozygote.
However, inthis case the rdlevant smple hypotheses about the parenta pair confer the same
probability on the observation, namely %2.. This meansthat H2'slikelihood is%2. The likelihoods of the
two hypotheses, as a function of the father’s genotype, are depicted in Figure 1.

Figure 1

Which hypothesis, Hlor H2, has the higher likelihood? To answer this question, we must
evauate the likelihood of H1, but to do this we have to know the values of the weighting terms w;, w,
and w;, which represent the properties of the mating scheme by which maes and femdesin the parenta
generation came together to reproduce. If one had empirica information about whether mating was
random or assortative (and to what degree), there would be no problem. But in the absence of such
information, it is hard to see how vaues for these weighting terms can be specified unless one regards



them as reflecting one' s subjective degrees of belief.

In this example the weighting terms are “ nuisance parameters”  Our interest isin inferring the
mother’ s genotype, but the father’ s genotype getsin theway. One solution that is sometimes
employed in science isto estimate the values of nuisance parameters by finding the vaues for those
parameters that maximize the likelihood of the composite hypothesisin question. In the case at hand, it
iseasy to seethat €, =0, €, =0, and €; = 1.0 are the vaues that maximize the likelihood of H1. If
we assume that AA mothers dways pair with aa fathers, we can conclude that H1 has alikelihood of
unity and soismore likdly than H2.

Although this procedure for handling nuisance parameters may seem to solve our problem, it
doesnot. Rather, we have merely changed the subject. We have not compared H1 and H2; instead,
we have compared L(H1) and H2, where L(H1) specifies a specific set of vauesfor the nuisance
parametersin H1. Thelikeihood of L(H1) is greater than the likelihood of H1, not equd toit. H1is
composte, but L(H1) issmple. Instead of assessing the average likeihood of the composite
hypothesis with which we began, we have evauated the likeihood of its likeliest specia case’

Thisexampleis atificid, but it illustrates a genuine issue that arises in scientific practice. Asa
more redistic example, consder the idea that the likelihood concept can be used to discriminate among
competing phylogenetic hypotheses (first proposed by Edwards and Cavali-Sforza 1964; recently
reviewed by Lewis 1998). Suppose we are trying to ascertain the phylogenetic relationships that
connect species X, Y, and Z and that our data consist of the characteristics these species are observed
to exhibit. There are three possible phylogenetic trees
- (XY)Z, X(YZ),and (XZ)Y. Thefirg of these possihilitiesis depicted in the accompanying figure.
Thetips of the tree represent species that exist now; interior nodes represent common ancestors. The
(XY)Z treesaysthat X and Y have acommon ancestor that is not an ancestor of Z.

Figure 2

How can data on the smilarities and differences these species exhibit be used to decide which
genedlogica hypothesisis best supported? The likelihood approach is to find the tree that confers the
highest probakility on the data. The problem, however, is that a phylogeny, by itself, does not tell us
how probable it isthat the three species should have the characteristics we observe. What is needed in
addition is a quantitative model of how different traits evolve in different lineages. For example, the
vaue of Pr{Data* (XY)Z] depends on the rules of evolution that each trait obeys in the four branches
depicted in the accompanying figure and on the characteristics that the root species possesses. The
likelihood of the tree topology is an average over the different possible vaues that these nuisance
parameters can teke:

Pr[Data* (XY)Z] = 3, Pr[Data* (XY)Z &N, JPr(N; * (XY)Z].



The hypothess (XY)Z is composte—it is an infinite digunction in which each digunct consgs of the
topology (XY)Z with the nuisance parameters fixed at a particular set of values. Biologists who use
maximum likelihood typicaly estimate the values of nuisance parameters from the data. Thus, instead of
comparing the likdihoods of (XY)Z, X(YZ), and (X2)Y, they compare the likelihoods of L[(XY)Z],
L[X(YZ)], and L[(XZ)Y]. The problem has been changed from one that is intractable to one that can
be solved.

A solution to this problem that istruer to the tenets of likelihoodism is to identify regions of
parameter space where the likelihoods of the phylogenetic hypotheses have one ordering, and other
regions where they have another.  Perhaps when the nuisance parametersfal in one region, (XY)Z is
the hypothesis that makes the data most probable, whereas when the nuisance parametersfdl ina
different region, X(Y Z) isthe hypothess of maximum likelihood. This conditiond assessment does not
have the findity of the unqualified condusion that (XY)Z is the maximum likelihood hypothess. Rather,
it points to further biological questions that must be answered if we wish to say more (Sober 1988).

The problem | have just surveyed — that composite hypotheses often do not have known
objective likelihoods —is not a problem for likeihoodiam, if that philosophy is sufficiently modest, but it
is aproblem for Bayesaniam, if that philosophy is sufficiently immodest. Modest likelihoodists can and
do admit that the likelihoods of composite hypotheses often cannot be evaluated. However, Bayesans
who want their epistemology to provide a complete account of scientific inference here confront a
second problem.  The difficulty with priors aso ataches to likelihoods®

5. A Further Problem for the Best-Case Strategy of Dealing with Nuisance Parameters

Although Bayesians and likelihoodists should not confuse the likelihood of a composite
hypothesis with the likelihood of its likeliest specid case, it isworth exploring afurther difficulty that
arisesif one changesthe subject inthisway. Let’ sreturn to the topology depicted in the figure and
condder what afully redistic modd of evolution in that tree will look like. We will want to have nine
nuisance parameters for each dichotomous character. Eight of these are branch trangition probabilities;
the ninth assigns a probability to the root species occupying character state 0. This moddl
acknowledges that there can be between-trait and within-trait heterogeneity;,
different traits can evolve according to different rules, and the rules that atrait follows on one branch
may differ from the rules that it follows on another.  The model says that heterogeneities are possible,
but it does not demand that they be actual. Two different parameters may have different vaues, but
they aso can have the same vaue. In addition to these nine parameters for each trait, afully redigtic
mode will aso need parameters that represents the degree of independence with which each pair of
traits evolvesin each branch. The presence of these parameters in our moded does not commit usto
saying that traits are corrdated in their evolution,
but merdly saysthat thisis possible.



The complex modd | have just described isredigtic, but it has an embarrassing consequence —
if we usethismode and deploy the best-case solution to the problem of nuisance parameters, the result
isthat dl phylogenies have alikdihood of unity. For example, condder a characteridtic in which X isin
date 1, Y isingate 1, and Z isin date 0; it is easy to find vaues for the nine nuisance parameters that
pertain to this character’ s evolution that entail that this distribution of characters has a probability of
unity. When we move to another character that has a different distribution, we can do the same thing.
Other topologies are no different. What this meansisthat it isimpossible to discriminate anong
phylogenetic hypotheses if we use the best case strategy in the context of afully redistic modd of the
evolutionary process.

This has not stopped evolutionary biology initstracks. Rather, biologists assgn likelihoods to
tree topologies by using congtrained models. These congraints fal into two categories.

Within trait constraints. The srongest verson of thisideaisthat atrait’s probability of
changing in aunit of time isthe same everywherein thetree. A wesker condraint isthet a
trait’s probability of changing in a unit of timeisthe same a any two Smultaneous tempord
intervals. In terms of the topology depicted in Figure 2, the latter condraint entailsthat e, = e,
but says nothing about the relationship of e, and e;; the former saysthat e, = €, and that e, = e,
if lineages 1 and 3 have the same durations.

Between trait constraints. Traits evolve independently of each other, and different traitsin a
lineage follow the same rules of evolution.

This second category of congraints has been applied both globdly, to dl traitsin the data, and locdly,
within classes of traits.

Although these congtraints save the problem of phylogenetic inference from collgpsing under its
own weight, they are manifestly unredigtic. Do weredly beieve that atrait’s rules of evolution are
exactly the samein different lineeges? Do we redlly believe that different traits follow exactly the same
rules of evolution? These areidedizations® What is clearly true is the unconstrained model, which
saysthat different traits may or may not evolve independently, that they may or may not follow the same
rules of evolution, and that a given trait may or may not follow the same rules in different lineages. We
thus have arrived a a dilemma: we can use aredlistic modd and give up on the idea of inferring
phylogenies by best-case maximum likelihood, or we can use a congtrained modd to infer phylogenies,
but leave our inference vulnerable to the charge that the modd used is not redigtic.

As noted earlier, the best-case dtrategy for dedling with nuisance parameters does not conform
to thedictates of likelihoodism, which is perfectly clear on the difference between the average
likelihood of a composite hypothessH and the likelihood of the smple hypothesisL(H).

However, | doubt that this point will give pause to biologists who use this strategy to reconstruct
phylogenies. Thisis because these biologists are frequentists, not likelihoodigts, they usethe frequentist



technigue known as the likelihood ratio test.’® Thistest preventsthe collgpse | have just described.
Instead of autometicaly opting for hypotheses of high likelihood, they ask whether more complex
hypotheses have likelihoods that are significantly greater than the likelihoods of smpler hypotheses.

Not thet dl iswell if one embraces frequentism to solve this problem. In addition to the
conceptua objections that Bayesians and likelihoodists have developed againgt frequentism,
frequentism hasapractical limitation in the problem & hand — the frequentist’ s likdlihood ratio test
gpplies only to nested hypotheses. This can beillustrated by considering our three competing tree
topologies and some of the process models already described. Consider adata set that describes the
character states of each speciesfor ten dichotomous characters. The accompanying table represents
the different best case hypotheses that are generated by bringing a tree topology together with a
process modd and then finding the maximum likelihood estimate of the nuisance parameters!* Modes
in the same column are nested, but entries in different columns are not.* Frequentism has no way to
implement diagona comparisons.

HHAHH R R tree topologies
HHH#HBHHH R HHRH AR R R
HHAHH R R (XY)Z X(Y2) (X2)Y
HHH##HH
All characters evolve L[(XY)Z & N9O] | L[X(YZ)& N90] |L[(X2)Y & N9O|
independently (N9O).
All characters evolve LIXY)Z& N9 [L[X(YZ)& N9 |L[(X2)Y & N9

independently and follow

rocess
Fnodels the samerules (N9).
All characters evolve L[(XY)Z & N5] L[X(YZ) & N5] L[(XZ)Y & N5]
independently, follow the
samerules, and evolve a a
congtant rate (N5).

6. Simplicity — the Achilles Heel of (Strong) Bayesianism

Inthelist of process models displayed in the table, N5 is smpler than N9, and N9 issmpler
than N90. Don’'t be mided by the lengths of the verba descriptions; the relevant consderation isthe
number of adjustable parameters. Modd N0 has 90 nuisance parameters — nine for each of theten
character digributionsin the data set. Because it has so many parameters, this modd is able to leave
open whether different traits evolve according to the same or different rules, and also whether agiven



trait follows the same rulesin different branches. In the table' slist of models, smpler modds entail
models that are more complex. Thisisthe kind of Situation that Popper (1959) was thinking about
when he equated smplicity with fasifiability.”® As Popper observed, the epistemic relevance of
smplicity in thisinstance cannot be captured by tipulating that Smpler theories are more probable. If
N5 entails N90, N5 cannot be more probable than N9O.

Howson (1988) correctly notes that thereisno logical prohibition against assgning smpler
models higher priors when modes are not nested. However, Popper’ s point remains true for nested
modes. What are we to conclude? It may seem that the question that needs to be addressed is
whether scientists should compare nested models. As noted before, they in fact do so; scientists are
often frequentists and the likelihood ratio test requires that models be nested. Bayesians may reply that
thisis a confusion from which scientists need to emancipate themsdves.  Since nested models are not
incompatible, why should we regard them as competitors? I'll return to this question in awhile; the
point | want to emphasize hereisthat the indgstence on non-nested models does not pluck the Bayesian
fat from thefire. Thisisbecauseit is olbscure what judtification the Bayesan can offer for assgning
smpler models higher priors.  For example, suppose we reformulate N90 so that N9 is no longer
nested in it —let N9O* use different parameters for different traits with the stipulation that different traits
cannot have exactly the same branch trangition probabilities. What judtification could there be for
assigning N9 a higher prior than N9O*? If agun were put to my heed, I’ d dlow dimensondity
considerations to lead me to bet on just the opposite judgment -- I'd say that it is more probable that
two traits have different probakilities of evolving than that they have exactly the same probabilities of
evolving.

If Bayesianism can’t capture the epistemic relevance of smplicity by defending an objective
ordering of prior probabilities, the other possibility isthat it might be able to explain the relevance of
samplicity viathe vehicle of likelihoods. However, we have just seen that serious difficulties stand in the
way of thisundertaking. The likelihoods of composite hypotheses often cannot be eva uated
objectively. And if we change the subject by using the best case strategy, the problem is that smpler
models inevitably come out with lower likelihoods, not higher ones*

| mentioned at the outset that Bayesianism has just two resources for explaining the epistemic
relevance of smplicity — priors and likelihoods. Neither of these appearsto be at dl promising. Doesit
follow that Bayesanism is mistaken? Thereisaway out to consider — perhaps one should deny that
amplicity has any epigemic rdlevance a al. Perhaps smplicity is merdy an aesthetic frill. Scientigts
like Impler theories for various reasons, but that does not mean that Smplicity is epistemicaly
sgnificant.

| think thisway out is blocked for two reasons. First, the practice of science makesit very hard
to believe that smplicity dways counts for nothing. 1t does no good for the Bayesian to point to
examples of scientific inference in which smplicity playsno role. Granted, there are such cases.
However, in biology and the socid sciences, scientists frequently compare models that contain different
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numbers of adjustable parameters. Smplicity is centra to science because model selectionisa
pervasive problem.

The second reason not to deny the epistemic import of smplicity is that there exists an
inferentia framework thet is neither Bayesian, nor likdihoodist, nor frequentist, which entails that
amplicity is epigemicaly rdevant and explainswhy thisisso. Thisisthe modd sdection framework
and criterion developed by H. Akaike (1973) and his school (see Sakamoto ef al. 1986). It turns out
that the smplicity of amodd, when measured in terms of the number of adjustable parametersiit
contains, is relevant to estimating how predictively accurate the model will be. Akaike' s framework
and criterion are nonBayesian, in that no prior probabilities are invoked. However, the criterion for
mode selection that Akaike derives does say that the likelihood of amode’ s likdiest specid caseis
relevant to estimating the model’ s predictive accuracy. Akaike (1973) describes his proposa asan
“extenson” of the method of maximum likelihood. Likelihood is rdevant to estimating predictive
accuracy, but it is not the only thing that is relevant; Smplicity is relevant too.®

Since this paper is about Bayesianism, not the work of Akaike, | won't try to explainin any
detail how these ideas work. However, | will make afew brief comments, which | hope will whet the
reader’ s gppetite. Akake suggested that the problem of mode selection be concelved in terms of a
certain god; the god is not to find models that are true, but models that will be predictively accurate.
This conception of the goa of modd sdection iswhat | mean by Akaike s“framework.” Akake aso
proposed a means for achieving that goal; he proved a theorem that describes how one can obtain an
unbiased estimate of amode’ s predictive accuracy. This theorem isthe basis for what has come to be
cdled the Akake information criterion (AIC). This separation of Akaike' s framework from his
criterion isimportant; there may be circumsatancesin which AIC is not the best criterion to use in model
sdection, even granting the goa of maximizing predictive accuracy. The modd sdlection literature
contains agood ded of discussion of thispoint. My own view isnot that AIC isthe be-dl and end-all;
what | find philosophically interesting is the Akake framework and a certain festure that many mode
selection criteria share —that smplicity is rlevant because it helps one estimate predictive accuracy.

Akaike sidea of predictive accuracy hasto be understood in terms of atwo-step process.
Models that contain adjustable parameters make predictions in the following sense: first one draws a st
of data from the underlying distribution and uses that data to estimate the vaues of the mode’ s
parameters (by maximum likelihood estimation). One then uses that fitted model to predict anew data
set drawn from the same didtribution. In terms of our previous notation, we use amodel M to make a
prediction about new data by using the old datato find L(M) -- it isL(M) that makes a definite
prediction. The predicted values may be close to the new data, or far away (as measured by the
Kulback-Lebler distance measure). Imagine using the modd repeatedly in this two-step process,
there will doubtless be some variation among these repetitions in terms of how well the fitted model
predicts new data. The average performance of the model iswhat definesits predictive accuracy.

The predictive accuracy of M isthe expected likdihood of L(M).
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Having models that are predictively accurate may be a desirable god, but how can one tell how
predictively accurate amodd is apt to be? That is, is predictive accuracy epistemically accessible?
Akaike s (1973) remarkable theorem provides an answer:

An unbiased estimate of the predictive accuracy of model M - Log-likelihood[L(M)] - k.

One takes the logarithm of the likelihood of the fitted moddl and subtracts k, the number of adjustable
parameters.’®* Complex models, when fitted to the data, tend to have higher likelihoods than simpler
ones, but they dso incur alarger pendty because of their complexity. For acomplex modd to have a
higher AIC vaue than asimpler one, it isn't enough that the complex modd fit the data better; it mugt fit
the data better by a sufficient margin to overcome the fact that it is more complex.

There is more to the Akaike framework than Akaike s theorem. For example, even though
AIC provides an unbiased estimate of amode’ s predictive accuracy, one may want to know how
much error thereisin this estimate. Sakamoto er al. (1986) describe a theorem that addresses this
question (see Forster and Sober 1994). The model selection literature explores this and other
properties of AIC and other model sdlection criteria. In addition, Akaike' s concept of predictive
accuracy needs to be supplemented. Akaike described what Forster (2002) calls interpolative
predictive accuracy; the concept of extrapolative predictive accuracy has interestingly different

properties.

Notice that it doesn’t matter to the Akaike framework or to AIC whether the models one
consders are nested or non-nested. Comparing nested models makes sense because nested models
can make different predictions when fitted to the data. 1t does seem strange to compare nested model's
if the god isto discover which modd istrue. Since nested modd's are not in conflict, why does one
have to choose? It is here that the Akaike framework is fundamenta. Bayesanstypicdly seetruth as
the god of inference —the point of evauating dataiisto say which of the competing theories one has
formulated has the highest probability of being true. When predictive accuracy is subgtituted for truth as
the god of inference, the epistemological landscape undergoes a fundamental change.

7. Conclusion

Objective Bayesianism has its place and so does subjective Bayesanism. By “objective
Bayesanism,” | don’'t mean a Bayesianism basad on the principle of indifference (how could that be
objective?), but one in which priors are objectively justified by a plausible account of a chance process.
When | say that subjective Bayesianism has its place, | mean that agents who have degrees of bdlief ina
proposition should use Bayes s Theorem to update. However, these two arenas for Bayesianism leave
alarge void in the theory of scientific inference. Many of the hypotheses of interest to science do not
have objective prior probabilities. In addition, there are many composite hypotheses for which
objective likelihoods cannot be provided. The reaction to these exigencies should not be aretrest to
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subjective Bayesanism. Thisis because it is doubtful that people dways have subjective degrees of
belief in hypotheses before they have any evidence in hand. But more importantly, the scientific
enterprise ams to separate objective evidence from subjective preconception.

These problems come vividly into focus when they are brought to bear on the question of why
samplicity matters in scientific inference. Bayesans have two resources to use in framing an answer.
They can argue that Smpler theories have higher prior probabilities or thet they have higher likelihoods.
When models are nested, it isimpossible for the smpler modd to have the higher prior (or posterior).
For non-nested models, thereis no logica contradiction in assgning Smpler modds higher priors, but
what could judtify that assgnment? It is not enough thet one has various prior degrees of belief. The
guestion is why those assgnments are right and others are wrong. Hopes for alikelihood account of
the role of Smplicity are likewise dim.r” Modéls containing adjustable parameters are composite, and it
often is obscure how the likelihoods of composite hypotheses can be compared objectively. One
might be tempted to solve this problem by using the best-case strategy. However, this renders smpler
hypotheses less likdly, not more so.

Isit plausble to think that these problems for Bayesianism will be solved with more time and
hard work? | tend to regard them as permanent and intractable. In contemplating the prospects for
progress in this research program, it isworth congdering the fact that Smplicity is not a puzzlement in
the Akake framework; rather, itsjudtification is patent. There are no prior probabilities here, and the
problem of evauating the likelihoods of composite hypotheses does not arise. 1 don’'t want to suggest
that this newer framework is a paradise free of conceptuad puzzles. But it is aframework well worth
exploring, in view of Bayesanism’s scope and limits.

Figure 1 Caption: The likelihoods of two hypotheses about the mother’ s genotype, relative to the
observation that the offspring’s genotypeis Aa. H2 say that the mother was Aa; this hypothesis confers
the same probability on the observation, regardless of what the father’ s genotype was. H1 saysthat the
mother was AA; what probability this hypothesis confers on the observation depends on the father's
(unknown) genotype.

Figure 2 Caption: In this phylogenetic tree, there are nine nuisance parameters for each dichotomous
character (whose two possible statesare 0 and 1). For each lineagei (i=1,2,3,4), e = Pr(lineege i
endsin state 1 * lineage i beginsin sate 0) and r; = Pr(lineage i endsin state 0 * lineage i beginsin Sate
1). In addition, there is one parameter that describes the state of the root — Pr(R isin state 0).
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Notes

*. | thank Martin Barrett, Ellery Edlls, Branden Fitelson, Richard Royal, and Michad Sted for useful
discusson.

1. Inthis paper | usethe terms “likelihood” and “likely” in the technica sense introduced by R.A. Fisher
—thelikdihood of ahypothesis H in the light of observations O is the probability that H confers on H,
not the probability that O conferson H. H’slikelihood is Pr(O * H), whileits probability is Pr(H * O).
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2.Bayesans need not argue that smplicity is dways relevant just by way of influencing priors, or that it
isaways rdevant just by way of influencing likelihoods. See Sober (1990) for discussion.

3. It would be a different matter if one had an empiricaly wel-confirmed theory that alowed oneto say
how often life can be expected to emerge from nonlife in various environments, and how often whole
phylogenetic trees can be expected to go extinct. A process theory of this kind would provide an
objective basis for the prior probabilities. See Sober (1999) for discussion.

4. The prior probability is properly so-cdled, not becauseit is a priori (it is not), but becauseitisin
place prior to one s taking the new evidence into account.

5. By likelihoodism, | mean the comparative principle that O supports H1 more than O supports H2 if
and only if Pr(O* H1) > Pr(O * H2). Itisafurther clam tha degree of differentid support is
measured by the likelihood ratio. Formulations of the Likelihood Principle often combine these two
elements, see Forster and Sober (2002) for discussion.

6. Since Bayesans usudly reserve priors of 0 and 1 for tautologies and contradictions, | take it that
they will want to assign the demon hypothesis an intermediate prior probability.

7. This*best-case procedure’ is discussed by Kalbfleisch and Sprott (1970), by Edwards (1972, pp.
109-119), and by Royall (1998, pp. 158-159).

8. Thereis aBayesan proposd for eva uating the average likelihoods of composite hypotheses.
Thisis Schwarz' s (1978) Bayesian information criterion (BIC). This approach imposes aflat
digtribution on parameter vaues that are near the data and a probability of zero on valuesthat are far
away; in addition, it renders commensurable the average likelihoods of composite hypotheses
containing different adjustable parameters by introducing stipulations thet fail to be invariant under
reparameterization. See Forster and Sober (1994, pp. 23-24) for discussion.

9. For discussion of the relationship between idedization and smplification, see Sober (1998, 2002)
and Forster (2000, 2002).

10. Don't be mided by the terminology — the likelihood ratio test is not consistent with likelihoodism.

11. In thistable, I’ ve written, for example, “L[(XY)Z & N9]” and not “(XY)Z & L[N(9)].” The
reason is that conjunctions in the same row often have their nuisance parameters st at different vaues,
depending on the phylogeny to which they are attached.

12. Although the conjunctions in this table that include the same phylogeny are nested, it is perfectly
possible for two such conjunctions to be non-nested (e.g., let one assume that there is between-trait
homogeneity and leave open whether there is within-trait homogeneity and let the other do the
opposite).
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13. Popper, of course, redized that smplicity is sometimes not epistemicaly relevant; he introduced his
equaion to explain what makes smplicity episgemicdly rdevant when it isso in fact.

14. For further discussion of Bayesanism’'s and likelihoodism’ s inadequate trestment of smplicity, see
Forster and Sober (1994) and Forster (1995).

15. For further discusson of Akaike's framework and theorem, see Burnham and Anderson (1998),
McQuarrie and Tsal (1998), Forster and Sober (1994, 2002), Forster (2002), and Sober (2002a).

16. More exactly, the formulation of Akaike's result that Forster and Sober (1994) and Forster (2002)
recommend is that an unbiased estimate of the modd’s predictive accuracy per datum
is (UN){ Log-likelihood[L(M)] - Kk}, where N is the number of data.

17. Thereisaspecid casein which | think this pessmismismisplaced. Cladigtic parsmony isa

method of inference used in phylogeny recongtruction. | suspect that this method makes sense to the
extent that it reflects likelihood considerations; see Sober (1988, 2002b) for discussion.
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