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context for astronomers

Alanna Connors

ABSTRACT 1In his paper, J. Berger has issued a friendly invitation to
Bayesian methods, both classical and new. In this paper I try to put some
of those concepts into context for astronomers. Particularly for those for
whom Bayesian inference is new, I hope to help translate why it might
be of interest to invest the significant amount of intellectual and software
effort involved in retooling. I highlight some of the standard benefits and
objections to classical Bayesian inference, then sketch out two simple exam-
ples. For the first, because we are astrophysicists, everything works. For the
second, more complicated example: maybe physicists could use thoughtful
expert help after all. I conclude with a few personal thoughts on moving to-
wards likelihood ratios, either frequentist or Bayesian; and towards leaving
the appealing but “ad hoc” statistics for data—exploration.

1 Goals/Context

1.1 Introduction

Why might recent developments in Bayesian analysis, or even standard
Bayesian procedures, be of interest to astronomers and physicists? J. Berger,
in [BE96] presents some examples, from the point of view of a statistician.
In this paper, I try to translate these concepts to a point of view more famil-
iar to astronomers and physicists. [BE96] focuses on hypothesis testing and
model selection. I try to start more slowly. I first highlight terms that may
be unfamiliar; and then very briefly sketch out standard Bayes parameter
estimation and likelihood ratios for two examples from ~y-ray astrophysics.
With these in mind, one can see where [BE96] presents classic examples
of Bayesian hypothesis testing; plus both some intriguing new ideas on the
difficult area of priors; and new developments in computer techniques. I
hope this might also briefly give statisticians some of the flavor of of trying
to eke out inferences about physical conditions of objects in the distant
sky; and where Bayesian methods might be more practical. I close with a
few personal thoughts on moving towards the use of likelihood ratios.
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1.2 What is it?

Bayesian inference is a clear procedure for building measurement tools
(probabilities and their ratios) for: 1) parameter estimation; 2) model selec-
tion and hypothesis testing; 3) robustness and sensitivity of results to model
choice, and prior information; and 4) prediction. Many astrophysicists are
more familiar with sampling statistics: the probability of the data X', given
a model or hypothesis M and parameters O, p(X|OMI) (or p(X|MI)).
With Bayesian inference one works with the inverse: the probability of
a model or hypothesis M and parameters © given the data, p(©|MX)
(or p(M]X)). One gets from one (data—space, on the right ) to the other
(parameter— or hypothesis—space, on the left) via Bayes’s Theorem:
p(OlD) p(M|I)

p(X|I)p(X|®I)’ or p(M|XI) = oD p(X|MI).  (1.1)
Here “I” represents prior measurements and information; p(©17) (or p(M|I))
is called the prior probability; p(X|©I) the direct probability or sampling
statistic; p(©|X ) (or p(M|XI)) is the posterior probability; and p(X|I)
serves as a normalization term.

The references cited by [BE96] give fine overviews and bibliographies. I
would like to highlight two: [JA78] contains a classic historical account from
the perspective of a physicist. Perhaps the earliest modern use of Bayesian
inference in astronomy is [BI71].

p(OX1) =

1.3 How is it different from what I'm used to doing?

Sampling statistics is based on the long—term (asymptotic) frequency of oc-
currence of a particular pattern of data, assuming the model is true. Many
astronomers use the recipes for likelihood ratios in [LM79],[CA78] to gen-
erate confidence intervals, which are based on the Central Limit Theorem
asymptotically holding. (Also, some astrophysicists might be more comfort-
able with the applied math term “inverse problems” [CB86]. Or, they may
not have realized that “forward-fitting”, using y?, is a maximum-likelihood
method that assumes a Gauss—Normal form for the sampling statistic.) By
contrast, Bayesian inference calculates the probability of the parameters
(or model) given any prior information, plus just the data one has.

The concept of priors, of assigning probability distributions to param-
eters before making inferences from the data, may also be new to astro-
physicists. [BE96] lists many standard options then spends some time dis-
cussing new “one-size-fits-all” priors; usually they are “custom-built”. I
want to highlight two distinctions: informative versus uninformative pri-
ors; and proper versus improper priors. When one has significant prior
information (such as a previous background measurement, or knowledge
of atomic line strengths), one can use an informative prior. Without such
knowledge, one uses an uninformative prior. In the latter case, a physicist
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or astronomer can often constrain the form of the prior from knowledge
of the geometry of the physical system, or physics theory, or invariance
arguments (see also [JAT8]). A proper prior is one that is normalized to
one; while an improper prior is a handy analytic form (such as a constant
or log distribution) that, when integrated over all parameter space, tends
to oo and so is not normalizable. [BE96] notes that the latter can work
well for parameter estimation, but has drawbacks for model comparison
and hypothesis testing. This drives his “intrinsic Bayes factor” approach.
When working in parameter—space one can integrate over uninterest-
ing (or “nuisance”) parameters; or indeed over all parameters. This is
called marginalization; another potentially unfamiliar term. Note that (by
marginalizing over all parameter space) one can directly calculate and com-
pare the global probabilities of two hypotheses with differing numbers of
parameters. There is no need to add an extra factor for each degree of
freedom (e.g. in sampling statistics one might require the difference in y?,
equivalent to —2log [p(X|G)I)], to be more than 1). As [BE96] illustrates,
integrating over each extra dimension intrinsically takes this into account.

2 Benefits / Objections

2.1 Benefits

It gives a clear mechanism to build a tool to get the best measure of distance
between two clearly stated hypotheses. It is always a sufficient statistic;
that is, 1t incorporates all the information about the hypotheses that is
available in the data; and it includes a mechanism to optimally incorporate
prior information. For example, [BH93] suggests an appealing but “ad hoc”
statistic for incorporating imaging information when searching for periodic
v-ray emission from a known radio pulsar. Each y-ray photon is weighted
by its angular distance from the source according to a telescope point—
spread function, before the data are binned at the pulsar period into a
phase histogram, and a y? test for a flat light—curve is performed. This
seems intuitive, but how does one know whether it incorporates all of the
information available in the data, and in one’s prior information?

One can tackle any problem where the hypotheses are clearly stated. For
example, many image processing applications have very large numbers of
parameters, comparable to the number of data points. This can be a numer-
ically intractable “inverse problem”, until one notices that with Bayesian
methods one has a prior that can act as a regularizer.

It is valid for moderate and small data sets (no asymptotics required). The
familiar recipes used by astronomers to generate confidence intervals are
based on the Central Limit Theorem [CAT78], [LM79]. Often this does not
strictly hold. For example there may be multiple peaks in the probability—
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space. Or, the sample size may be very small and the measurement not
repeatable: [LO92] points out there was only one chance to measure neu-
trinos from SN 1987A; there were roughly two dozen neutrinos, and ap-
proximately 8 parameters.

One can reduce dimension of problems by integrating over uninteresting
parameters. A common example: an interesting source energy spectrum
might have ~ 10? energy bins, low Poisson counts per channel, plus mea-
surements of the ~ 102 background rates in each bin. One does not subtract
the background rate from each energy channel in the source spectrum, but
instead marginalizes over the imperfectly known background rates [L.O92].
It also clears up what to do with the “number of trials” question: one
integrates over a range of trial parameters.

One can compare the likelihoods of non—nested models with different num-
bers of parameters. [BE96]. Also, by definition, one can handle uncertain-
ties in the model or in prior information. Examples include uncertainties
in stellar coronal models; or in energy response matrices.

2.2 Objections

Learning the language, retooling. “It’s not in Bevington.” No, it’s not; but
neither are most of the techniques discussed in these proceedings. Becom-
ing familiar with the language of priors, posteriors, marginalizations, and
credible regions requires a significant effort.

Getting practical, reliable priors. This is an active area of research, as
[BE96] makes clear. One approach is to report one’s results in a form where
the effect of using different priors is easy to calculate.

Computation time. “Rev. Thomas Bayes started his calculation in 1783,
and they’re just now finishing.” — D. J. Forrest on the recent rise in interest
in Bayesian methods. Although marginalization is a Bayesian technique
of great power, it requires integrating over parameter space. Numerical
integration in high dimensions is one of the classic high-CPU problems.
[BE96] touches on some new techniques. However, when the integration
can be done analytically, marginalizing can actually speed up a calculation

[LO92].

No general “goodness of fit” like Y2. “That’s an objection?” — standard
Bayesian response. Standard significance tests use the tail of the distribu-
tion. [BE96] works through an example showing this is often not a very
good discriminator between two hypotheses. Instead a Bayesian analysis
specifically calculates the probability or likelihood of two (or more) hy-
potheses.
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3 Simple example: Astrophysicists have it easier
than statisticians

3.1 Specifying the problem

Periodic Time Series Analysis. Suppose one is searching for v-ray emis-
sion from a known pulsar, with position, period, and all period derivatives
known from radio data. Given a set of y-ray data, what is the likelihood
that a periodic signal has been detected? This is a quick sketch. For more
details, [GL92] carefully treat a problem that is similar but has a different
shape function.

Data. The data are in the form of time-tagged events (point Poisson pro-
cess): a list of photon arrival times with a 3° window around the source
position, and standard data quality cuts on the other parameters [MU95].
The two sets I show here are 1-3 MeV and 10-30 COMPTEL data on the
well-known 33 ms Crab pulsar. It is a 14 day observation. There are 54626
photons in this 1-3 MeV dataset (about 1 every 20 seconds); and 1981 in
the 10-30 MeV data (about 1 every 10 minutes). There is known to be a
significant (> 80% of the events) background component. For this example
we look for the total pulsed fraction of the source + background rate.

Null hypothesis, My. The photon arrival times are completely random, and
can be described by a Poisson process with a constant rate pg(t) = B.

Interesting hypothesis, My. The photon arrival times are periodic, with a
shape described by p(?), with < p(t) > = 1 when averaged over one cycle;
and total normalization described by B: p1(t) = Bp(t).

Shape function for interesting hypothests. Since this 1s a Poisson process,
it 1s convenient to describe the periodic shape by an exponentiated Fourier
series, or generalized von Mises distribution. For one component, p(t)
eXp[—K? cos(O(t) + (b)], with ©(¢) the pulsar phase from radio data; and ¢
the unknown phase difference between the radio and gamma-ray energies.
The parameter x is known as the shape or concentration parameter, with
pulsed fraction f = tanh(x) . The normalization condition < p(t) > = 1
requires p(t) = eXp[—K? cos(O(t) + (/))]/Io(ﬁ), where Iy is the modified
Bessel function of order zero.

3.2  Assigning probabilities

Priors. Knowing the physical meaning of the pulsed fraction f € [0, 1]
and relative phase ¢ € [0, 27] allows one to assign unambiguous properly
normalized prior probabilities, even when one has no previous measure-
ments. From symmetry, one argues that the prior for the phase ¢ should
be p(¢|I)d¢ = d¢/(2m). Likewise, the prior on the pulsed fraction can
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be given by p(f|I)df = df. The prior on B € [0, Bg] is the only am-
biguous assignment. Should it be a uniform prior, p(B|I)dB = dB/By?
A log—uniform prior, p(B|I)dB = dB/(Blog(By))? However, whatever the
choice, all dependence on B will be exactly the same for the null and in-
teresting hypotheses, and so will cancel when a likelihood ratio is taken.
For this example, I chose the former, and let By — oo at the end of the
calculation.

Direct probability. For both null and interesting hypotheses, one uses the
Poisson probability, given a model rate u(t), and detection of N photons
at times {t3}, in a total live-time T, in (very small) time bins é¢ [GL92]:

Pt} (), 1) = exp |- /

Tr

u(t)dt] TT w(tw)ét. (1.2)

Turning the crank. For each hypothesis, one applies Bayes’s Theorem, inte-
grates analytically over the amplitude and phase parameters B and ¢, and
then takes the ratio. (The normalization term p(X'|]) cancels, and so is not
calculated.) This gives A(f), the log likelihood for parameter estimation:

MF) = logyo |Io(kSn)/To(8)" ], (1.3)

where Sy 1s defined as Sy = % ch\le cos? O(ty) + sin? O(ty). For k = 1,
this is analogous to a frequentist Rayleigh statistic.

For hypothesis testing, one obtains the Bayes factor, or ratio of the total
probabilities of the interesting to null hypotheses:

Lo
o(kSN
L = / df%; f = tanh(x). (1.4)
0 o(k)
3.3 Application to data
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Here we plot A(f) for two different datasets. Both are from a two week
CGRO-COMPTEL observation of the Crab pulsar. The first shows the 1-
3 MeV band, where it was detected very significantly (total pulsed fraction
f = 0.042 4 0.006; Bayes factor £ = 107-®). The second shows the 10-30
MeV Crab data. The total pulsed fraction f = 0.063 £ 0.03 is suggestive,
but not a formally significant detection (Bayes factor £ = 10795 < 1).

4  Adding a complication: astrophysicists need
help from statisticians

Joint tmaging and timing analysis. With Bayesian inference, 1t is straight-
forward to add more information. Since these data were from an imaging
telescope, why not use the imaging response on the full dataset, rather than
just an angular window around the source? One should be able to derive a
likelihood ratio for joint imaging and timing analysis, and at once obtain
credible regions for both the source flux and pulsed fraction. The data are
the same, save that a much wider angular window was used. There are
157175 photons in this 1-3 MeV dataset (about 1 every 8 seconds); and
7096 in the 10-30 MeV data (about 1 every 3 minutes). The models are a
little more complicated. Let j be the index for the spatial imaging bins; j;
the shape of the background as a function of bin position, with Z]' B8; =1,
R; the instrument response (or point—spread function) in bin j, given the
known pulsar position; and A the source flux (photons-em~2-s=1). Note
that the shape of the instrument background 3; and the response R; are
both known a priori. The rate for the null hypothesis, My, is still one com-
ponent: po;(t) = Bf;(t). However, the rate for the interesting hypothesis,
My, is now two (background + source): p1;(¢) = BS;(t) + AR, p(t).

Assigning probabilities. One assigns the same priors for ¢, f, and B one did
previously, but how does one assign a prior for A7 There i1s no one unam-
biguous choice, and dependence on A will not cancel when the likelihood
ratio is taken. For this calculation, I used a uniform prior on A € [0, Ag],
with 4 = 10* photons-em~%-s~'. Once the p are given, the direct proba-
bilities have the same form as before.

Turning the crank. This gives A(f), the log likelihood for parameter esti-
mation:

Bo T N+1
MJ4) = logio[p(alD) [ an=k—
N
exp[~T0 S (BA; + AR AV [T (BB + ARspt)) ]|, (1)
i k=1

and global Bayes factor £ = fol df fOAD dA 104 where the integrations
over B, f and A are performed numerically.
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Application to data. The results (68.27,95.45, and 99.73% posterior proba-
bility credible regions) are displayed for the same CGRO-COMPTEL Crab

observations as before.

Vp 1 COMPTEL 1-3 MeV Crab data Vp 1 COMPTEL 10-30 MeV Crab data
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The detections appear more significant. For the 1-3 MeV data, one finds
asource flux A = 1.2 x 1073 £6 x 10~° photons-cm™2-s~'; a source pulsed
fraction f = 0.3540.05; and a global Bayes factor £ = 107 . For the 10—
30 MeV data, one finds a source flux A = 6.1 x 107+ 7.6 x 10~° photons-
em~2-s7!; a source pulsed fraction f = 0.36 & 0.15; and a global Bayes
factor £ = 10%9? . However, without a prior for A with an unambiguous
normalization, it is hard to interpret the total likelihood of the hypothesis
that there 1s a pulsed ~-ray source. A different choice of prior and Ay would
have given about the same parameter constraints, but different global Bayes
factors. This was the problem addressed by J. Berger’s “intrinsic Bayes
factor” method.

5 Future thoughts

For the future. Clearly thoughtful priors are an active area of concern for
the future. For many problems, an astrophysicist may be able to use phys-
ical knowledge of a system to assign reasonable, proper priors; for others,
the choice may be ambiguous, so much remains to be worked out. We are
aided by both increases in computation speed, and by new numerical inte-
gration techniques such as MCMC. This allows a greater flexibility in the
kinds of problems one can tackle in a reasonable amount of time.

Personal thoughts. 1 often find that, once having derived a Bayesian likeli-
hood ratio, I later see a relation to a standard maximum likelihood statistic.
I find the Bayes prescription clearer, especially when exploring the problem.
[TA93] coined term “likelihoodist” to describe those basing their inference
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on the shape of a likelihood, Bayesian or otherwise. Astronomers are clever
people, and come up with many ingenious, intuitive, and speedy ad-hoc
statistics. I am coming to consider these as methods of data exploration
and visualization; but for the final calculations of probabilities and uncer-
tainties, I encourage astrophysicists to make more use of a “likelihoodist”
perspective.
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