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Abstract

Subjectivism has become the dominant philosophical foundation for Bayesian infer-
ence. Yet, in practice, most Bayesian analyses are performed with so-called “noninfor-
mative” priors, that is, priors constructed by some formal rule. We review the plethora
of techniques for constructing such priors, and discuss some of the practical and philo-
sophical issues that arise when they are used. We give special emphasis to Jeffreys’s
rules and discuss the evolution of his point of view about the interpretation of priors,
away from unique representation of ignorance toward the notion that they should be
chosen by convention. We conclude that the problems raised by the research on priors
chosen by formal rules are serious and may not be dismissed lightly; when sample sizes
are small (relative to the number of parameters being estimated) it is dangerous to put
faith in any “default” solution; but when asymptotics take over, Jeffreys’s rules and
their variants remain reasonable choices. We also provide an annotated bibliography.
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1 Introduction

Since Bayes (1763), and especially since Fisher (1922; see Zabell, 1992), the scope and
merit of Bayesian inference have been debated. Critics find arbitrariness in the choice of
prior an overwhelming difficulty, while proponents are attracted to the logical consistency,
simplicity, and flexibility of the Bayesian approach and tend to view determination of a
prior as an important but manageable technical detail. These days most Bayesians rely on
the subjectivist foundation articulated by De Finetti (1937, 1972, 1974, 1975) and Savage
(1954, 1972). This has led to suggestions for personal prior “elicitation” (Savage 1954,
Lindley, Tversky and Brown 1979, Kadane, Dickey, Winkler, Smith and Peters 1980) but
these inherently problem-specific methods have not been developed extensively and have
had relatively little impact on statistical practice. Thus, as increased computing power has
widened interest in Bayesian techniques, new applications continue to raise the question of
how priors are to be chosen.

The alternative to elicitation is to try to find structural rules that determine priors. From
time to time, especially during the 1960’s and 1970’s, and again in the past several years,
various such schemes have been investigated and there is now a substantial body of work on
this topic. Feeling the urgency of the problem, and recognizing the diversity of the articles
on this subject, we undertook to review the literature and appraise the many methods that
have been proposed for selecting priors by formal rules. This paper is the result of our efforts.

Since the fundamental ideas and methods originate with Jeffreys, we begin, in Section 2,
with an overview of his work. We discuss Jeffreys’s philosophy and we explain the techniques
he used to construct priors in estimation and testing problems. An essential observation is
that Jeffreys’s point of view evolved toward seeing priors as chosen by convention, rather
than as unique representations of ignorance. Section 3 is a list of methods for constructing
prior distributions. In Section 4 we discuss some of the philosophical and practical issues
that arise when choosing priors conventionally, by formal rules. We draw conclusions from
our study and provide our own interpretations in Section 5. This is followed by an annotated
bibliography.

Since our discussion is fairly abstract it is worth keeping in mind some concrete examples.



One important class, which is useful for this purpose, is that of the multivariate Normal
distributions, with mean g and variance matrix Y. There are many special cases of interest.
For instance, g and/or ¥ may depend on some lower-dimensional parameter vector 6; when
p = p(f) with ¥ = o - I we obtain the standard nonlinear regression models, and the
structure ¥ = ¥(8) includes “components of variance”, hierarchical, and time-series models.
We take for granted the fundamental difficulty in uniquely specitying what “non-informative”
should mean. Thus, we prefer to call the priors we discuss reference priors. Because Bernardo
(1980) used the term “reference prior” for a prior chosen by a particular formal rule (de-
scribed in Section 3.5, below), we have struggled with alternative labels such as “conventional
prior”, “default prior”, or “generic prior”. In the end, however, we have returned to the ter-
minology of Box and Tiao (1973, pp. 22-23), who followed Jeffreys (1955), because we feel

it is the best word for the purpose. Our reasons should become clear in the next section.

2 Jeffreys’s Methods

The concept of selecting a prior by convention, as a “standard of reference,” analogous to
choosing a standard of reference in other scientific settings, is due to Jeffreys. Subsequent
efforts to formulate rules for selecting priors may often be seen as modifications of Jeffreys’s
scheme. Thus, we devote a section to a description of his methods. We begin with some
philosophical background, then move on to specific rules. Jeffreys was careful to distinguish
estimation and testing problems. We review his methods for choosing priors in testing

problems in Section 2.3.

2.1 Philosophy

As is true of methods generally, Jeffreys’s should be understood in conjunction with the
philosophy that generated them and, in turn, was defined by them.

Jeffreys has been considered by many to have been an “objectivist” or “necessarist”.
Certainly, there is a sense in which this label is accurate, and it was useful for Savage

(1962a, 1962b) to distinguish Jeffreys’s from his own subjectivist point of view. But there is



a subtlety in the opinions voiced by Jeffreys, as they evolved over time, that is fundamental
and advances the discussion beyond the plateau Savage surveyed. As we document below,
Jeffreys believed in the existence of states of ignorance, and he subscribed to the “Principle of
Insufficient Reason”, neither of which play a part in subjectivist theory. But in his reliance
on convention he allowed ignorance to remain a vague concept, that is, one that may be
made definite in many ways, rather than requiring a unique definition. This provided a more
flexible, vibrant framework that could support modern practice.

Savage (1962a, 1962b) labeled “necessarist” the position that “there is one and only
one opinion justified by any body of evidence, so that probability is an objective logical
relationship between an event A and the evidence B.” Jeffreys’s point of view in the first

edition of Scientific Inference (1931, p. 10) puts him in this category.

... logical demonstration is right or wrong as a matter of the logic itself, and
is not a matter for personal judgment. We say the same about probability. On
a given set of data p we say that a proposition ¢ has in relation to these data
one and only one probability. If any person assigns a different probability, he
is simply wrong, and for the same reasons as we assign in the case of logical

judgments.

A similar passage may be found in the first edition of Theory of Probability (1939, p. 36).

The historical basis for Savage’s categorization is already clear but there is a further
reason for identifying Jeffreys as a “necessarist”. This comes from considering the case in
which there are only finitely many events (or values of a parameter, or hypotheses). One test
for adherence to the necessarist point of view is whether, in this case, a uniform distribution
is advocated, according to what has been called (after Laplace, 1820; see Section 3.1, below)
the “Principle of Insufficient Reason”. This principle requires the distribution on the finitely
many events to be uniform unless there is some definite reason to consider one event more
probable than another. The contentious point is whether it is meaningful to speak of a
“definite reason” that does not involve subjective judgment.

According to this test, Jeffreys continued to be a necessarist. He believed in the existence

of an “initial” stage of knowledge, and thought it was important to be able to make inferences



based on data collected at this stage. In the case of a particular hypothesis being considered,
he described this stage (1961, p. 33) as one at which an investigator has “no opinion” about
whether the hypothesis is true. He went on, “If there is no reason to believe one hypothesis
rather than another, the probabilities are equal ... if we do not take the prior probabilities
equal we are expressing confidence in one rather than another before the data are available

. and this must be done only from definite reason.” Jeffreys added that the Principle of
Insufficient Reason is “merely a formal way of expressing ignorance.”

Note that a subjectivist would agree that assigning unequal probabilities to two hypothe-
ses would be “expressing confidence in one rather than another.” A subjectivist, however,
would not accept any restriction on, nor require any special justification for, the belief. To
a subjectivist, the probability assessment is in just this sense supposed to be “subjective.”
Thus, a subjectivist has no pressing need for a “way of expressing ignorance.”

Despite his belief in an “initial” stage at which an investigator is ignorant, and his
application of Insufficient Reason at this stage, we have in his later writings what might be
regarded as Jeffreys’s attempt to sidestep the major obstacle in the necessarist construction.
In the second edition of Scientific Inference the passage cited above, concerning probability
as a uniquely determined logical relation, is absent. Instead, Jeffreys took reasonable degree
of belief as a primitive concept, and said simply (1957, p. 22), “If we like, there is no harm
in saying that probability expresses a degree of reasonable belief.” The choice of an initial
assignment of probability then became a matter of convention, in the same way that the
correspondence between a real-world object and a primitive concept in any axiom system
is outside the formal system and must rely on some external rule for its application. Thus,
Jeffreys maintained that his approach did not assume that only one prior was logically

correct. In explaining his position (1955, p. 277), he wrote:

It may still turn out that there are many equally good methods. . .if this happens
there need be no great difficulty. Once the alternatives are stated clearly a
decision can be made by international agreement, just as it has been in the

choice of units of measurement and many other standards of reference.

Meanwhile, the section cited above from the first edition of Theory of Probability is



altered in the second and third editions (1948, pp. 36-37; 1961, pp. 36-37), and says,
“...in a different world, the matter would be one for decision by the International Research
Council.” Thus priors, like weights and measures, are defined by convention. As long as we
agree on these conventions, the particular choice is not crucial.

It is clear from these passages that Jeffreys did not insist on unique representations of
ignorance, so that statements such as, “According to Jeffreys’s conception there is only
one right distribution” (Hacking, 1976, p. 203) are inaccurate. When Savage (1962b, p.
21) remarked that, “It has proved impossible to give a precise definition of the tempting
expression ‘know nothing’ 7 Jeffreys responded (1963), “But who needs a definition?” by
which we interpret him to mean that conventional rules suffice without incorporation of a
formal definition into his axiomatic framework. On the other hand, although he did not
claim that logic demanded a particular prior to represent ignorance, Jeffreys did work to
find “the best” rule in each of many cases. His principles for doing so were supposed to
provide “a guide”, but in some cases he thought these would “indicate a unique choice”
(1961, p. 37). Ideally, that is, “in a different world”, there could be agreement on a single
prior for use under ignorance in each problem.

The net effect of this re-examination is to make Jeffreys’s approach seem somewhat less
rigid, and to recognize the importance of convention in his scheme. We have based our

remarks on Kass (1982), which responded to Zellner (1982).

2.2 Rules for priors in problems of estimation

Jeffreys considered several scenarios in formulating his rules, and treated each separately.
The simplest is the case of a finite parameter space, in which, as we said in Section 2.1,
he adhered to the Principle of Insufficient Reason in advocating the assignment of equal
probabilities to each of the parameter values. Jeffreys then considered the cases in which the
parameter space was a finite interval, the interval (—oo,00), or the interval (0,00). In the
first two cases Jeffreys took the prior density to be constant over the interval. In the second
case this entails, of course, that the prior be improper, i.e., that it not integrate. He did

not consider this to raise any fundamental difficulties. For the third case, most commonly



associated with an unknown standard deviation o, he used the prior 7,(c) = 1/0. His chief
justification for this choice was its invariance under power transformations of the parameter:
if ¥ = ¢ and the change-of-variables formula is applied to 7, one obtains 7. (y) = 1/7; thus,
applications of the rule to o and v lead to the same formal prior.

In a 1946 paper, Jeffreys proposed his “general rule.” Writing the Fisher information

matrix as (), where I(6),;; = E(—%), the rule is to take the prior to be

m6(0) o det(1(6))Y2. (1)

(Here and throughout we use det(:) to denote the determinant.) It is applicable as long
as 1(0) is defined and positive-definite. As is easily checked, this rule has the invariance

property that for any other parameterization 4 for which it is applicable,

7o(0) = 7(3(0)) - det( 21

i.e., the priors defined by the rule on v and 8 transform according to the change-of-variables
formula. Thus, it does not require the selection of any specific parameterization, which could
in many problems be rather arbitrary; in this sense it is quite general. Additional discussion
of the rule is given in Section 3.1. (There are other priors that are parameterization invariant;
see Hartigan, 1964.)

Jeffreys noted that this rule may conflict with the rules previously stated, which depend
on the interval in which a parameter lies. In particular, in the case of data that follow
a N(p,o?) distribution, the previous rule gives m(u,0) = 1/o while the general rule gives
7(p,0) = 1/a*. The latter he found unacceptable (because if extended to the case of spherical
Normal data it would imply that the marginal posterior distribution of each component of
the mean would have a ¢ distribution with degrees of freedom no longer depending on the
dimensionality of the mean vector). He solved this problem by stating that x4 and o ought to
be judged independent « priori and so should be treated separately. When the general rule
is applied while holding o fixed it gives the uniform prior on g, and when it is applied while
holding g fixed it gives the prior 7(o) o 1/o. Thus, with this modification, the general rule



becomes consistent with his previous rules.

Jeffreys went further, and suggested this modification for general location-scale problems.
He also proposed that priors in problems involving parameters in addition to location and
scale parameters be taken by treating the location parameters separately from the rest (1961,
pp. 182-183). That is, if there are parameters yq, ..., g, and 8, where 8 is multidimensional,

then the prior he recommended becomes

(1, -y fhk, 9) ocdet(](@))lﬂ, (2)

where () is calculated holding g, ...,y fixed. When there are also scale parameters
involved, these become part of 6 and (2) is applied. The prior in (2) may then also be
written in the form w(py, ..., pe, o1,. .., 08, 0) o det(1(0))V2115 o7, where 1(0) is now

calculated holding all of uq,...,pr and o4, ..., o fixed.

DEFINITION. We will call (1) and (2) the prior determined by Jeffreys’s general rule,
letting the context distinguish these two cases. To contrast (2) with the prior obtained by
applying (1) when there are location parameters, we will refer to (1) as the prior obtained
from Jeffreys’s non-location rule. Thus, what we call Jeffreys’s non-location rule is a rule

Jeffreys recommended not be applied to families having location parameters.

Though the calculations are sometimes somewhat involved, it is straightforward to apply
(2) to the class of multivariate Normal models mentioned in the Introduction. When either
p or X depend on a parameter vector 6, the information matrix on § may be obtained via
the chain rule from that on (g, ¥) in the unrestricted case.

We note Jeffreys also suggested (1961, p. 185) that in the case of mixtures, the mixing

parameters should be treated independently from the other parameters.

2.3 Bayes factors

Jeffreys emphasized the distinction between problems of estimation and problems of testing.
Importantly, in testing he did not advocate the use of the rules discussed in Section 2.2,

above, but instead recommended a different method.



Suppose Y = (Y1,...,Y,) follow a distribution in a family parameterized by (3,v¢) €
B x W having a density p(y | 3,1), and the hypothesis Hy : ¢ = ¢ is to be tested against
the unrestricted alternative Hy : ¢» € W. Jeffreys’s method is based on what is now usually

called the “Bayes factor ”

_ ey | B dbo)mo(B)dp
JIply | 8,9)w (8, 4)dBdy

(3)

where 7o(f) and 7(3, ) are priors under Hy and H4. The Bayes factor may be interpreted
as the posterior odds of Hy when the prior odds are 1 : 1. More generally, it is the ratio of
posterior odds to prior odds, regardless of the prior odds on Hy. For an extensive review of
modern methodology using Bayes factors, see Kass and Raftery (1993).

Jeffreys’s proposals for priors 7y and 7 appear in Sections 5.02, 5.1-5.3, and 6.2 of Theory
of Probability. Generally, he used his estimation reference priors on the nuisance parameter
B. As he showed, and Kass and Vaidyanathan (1992) elaborated upon, when ¢ and 3
are assumed orthogonal and a priori independent the value of the Bayes factor is not very
sensitive to the choice of my. The prior on ¥, on the other hand, remains important.

When t was a probability, as in a Binomial problem, Jeffreys (1961, Section 5.1) used
a flat prior on (0,1). For the Normal location problem, in which 3 is the Normal standard
deviation and the null hypothesis on the mean ¢ becomes Hy : ¢ = 0, Jeffreys (1961, Section
5.2) took the prior on ¢ to be Cauchy. He argued that, as a limiting case, the Bayes factor
should become 0 if the observed standard deviation were zero, since this would say that
the location parameter was in fact equal to the observed value of the observations. This
requires that the moments of the prior do not exist and, he said, the simplest distributional
form satistying this condition is the Cauchy. Furthermore, he liked this form because he felt
it offered a reasonable representation of “systematic errors” in observations (as opposed to
“random errors”): a non-zero location parameter would be treated as if arising from one
among many such, corresponding to one series of observations among many series made
under differing conditions.

Jeffreys treated the general case, in which g and @ were one-dimensional but the distri-

bution for the data was arbitrary, by assuming the parameters were orthogonal and then,
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drawing an analogy with the Normal location problem, taking the prior on ¥ to be Cauchy
in terms of the symmetrized Kullback-Leibler number (Jeffreys, 1961, pp. 275 and 277). He
then used an asymptotic approximation to obtain a simple computable form.

Kass and Wasserman (1993) have shown how Jeffreys’s method may be generalized to
arbitrarily many dimensions by replacing Jeffreys’s requirement of parameter orthogonal-
ity (that the information matrix be block diagonal for all parameter values) with “null-
orthogonality” (that the information matrix be block diagonal when ¢ = ). The log of
resulting approximation has the form S + ¢ where S is the Schwarz criterion and ¢ is a con-
stant. In addition, they note the disappearance of the constant ¢ when a Normal prior is used,
and they point out the interpretation of such a prior is that “the amount of information in
the prior on % is equal to the amount of information about  contained in one observation.”
They find this a reasonable prior to use and conclude that there is good motivation for using
the Schwarz criterion (or some minor modification of it) as a large-sample testing procedure.
Their results generalize some given previously, for the special case of linear regression, by
Smith and Spiegelhalter (1980) and Zellner and Siow (1980).

[.J. Good has written extensively on Bayes factors. In Good (1967) he followed Jeffreys
in suggesting a Cauchy prior for the parameter of interest, in that case the log of the con-
centration parameter for a Dirichlet distribution. He suggested subjectively determining the
choice of Cauchy location and scale parameters, but in his tabulations (p. 414) used the
standard Cauchy as a reference prior.

In most cases, Jeffreys assumed the initial probabilities of the two hypotheses were equal,
which is a reference choice determined by “insufficient reason” (Section 2.1, above). Alter-
natives have more recently been proposed: Pericchi (1984), following on earlier work by
Bernardo (1980), discussed maximizing expected information gain as a method of selecting
between competing linear regression models. Here, both parameters appearing within the
models and the probabilities assigned to them are considered quantities about which an ex-
periment provides information. The design matrices introduce an interesting complication

to the problem, generally leading to unequal probabilities.
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3 Methods For Constructing Reference Priors

Many methods have been proposed for constructing reference priors. In this section we
describe most of these methods. Whenever possible, we avoid technical details and present
the arguments in their simplest forms. Often, different arguments lead back to Jeffreys’s
prior or some modification of it. Sometimes the parameter § can be written in the form
§ = (w,\) where w is a parameter of interest and A is a nuisance parameter. In this case,
reference priors that are considered satisfactory for making inferences about # may not be
satisfactory for making inferences about w. Much of the recent research on reference priors
has been inspired by this latter observation. This work is highlighted in sections 3.5 and 3.7
and in the end of 3.2.

3.1 Laplace and the Principle of Insufficient Reason

If the parameter space is finite, Laplace’s rule, or the Principle of Insufficient Reason is to use
a uniform prior which assigns equal probability to each point in the parameter space. The
use of uniform probabilities on finite sets dates back to the origins of probability in gambling
problems. The terminology come from references by Laplace to a lack of sufficient reason to
suppose an alternative (e.g., Laplace, 1820; Howson and Urbach, 1989, p. 40, attribute its
statement as a “Principle” to von Kries, 1886).

This rule is appealing but is subject to a partitioning paradox: it is inconsistent to apply
the rule to all coarsenings and refinings of the parameter space simultaneously. Shafer (1976,
pp 23-24) gives a simple example. Let © = {6,6:} where 6; denotes the event that there
is life in orbit about the star Sirius and #, denotes the event that there is not. Laplace’s
rule gives P({0:1}) = P({062}) = 1/2. But now let Q = {w;,wq,ws} where w; denotes the
event that there is life around Sirius, wy denotes the event that there are planets but no life
and w3 denotes the event that there are no planets. Then Laplace’s rule gives P({w1}) =
P({w2}) = P({ws}) = 1/3. The paradox is that the probability of life is P({6;}) = 1/2 if
we adopt the first formulation but it is P({w;}) = 1/3 if we adopt the second.

In practice, the partitioning paradox is not such a serious problem. One uses scientific

judgment to choose a particular level of refinement that is meaningful for the problem at
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hand. The fact that the space could, in principle, be refined further, is not usually of
great practical concern. Indeed, according to Stigler (1986, p. 103), Laplace assumed that
the problem at hand had already been specified in such a way that the outcomes were
equally likely. And one could argue that in a decision problem, the structure of the problem
determines the level of partition that is relevant (Chernoff 1954).

For a continuous parameter space, the natural generalization of the principle of insufficient
reason is to use a flat prior. A problem with this rule is that it is not parameterization
invariant. For example, if § is given a uniform distribution then, ¢ = ¢’ will not have a
uniform distribution. Conversely, if we start with a uniform distribution for ¢ then 8 = log ¢
will not have a uniform distribution. To avoid a paradox we need a way to determine a
privileged parameterization.

Perhaps the oldest and most famous use of a uniform prior on an infinite set is Bayes
(1763) who used a uniform prior for estimating the parameter of a binomial distribution.
Stigler (1982) argues that Bayes’ paper has largely been misunderstood. According to Stigler,
the thrust of Bayes argument was that X,,, the number of successes in n trials, should be
uniform, for every n > 1. This entails that § must have a uniform prior. This argument is
compelling because it is based on observable quantities, although the uniform distribution
on X, is still subject to refining paradoxes.

The partitioning paradox on finite sets and the lack of parameterization invariance are
closely related. In both we cases we have two spaces © and ) and a mapping ¢ : ) — O.
We then have the choice of adopting a uniform prior on © or adopting a uniform prior g
on Q which then induces a prior 7 on ©, where 7 is defined by 7(A) = u(g~'(4)). In
general, 7 will not be uniform. In the continuous case, the mapping ¢ corresponds to some
reparameterization. In the finite case, () is a refinement of @ and ¢ relates the original space

O to its refinement. In the “life on Sirius” example, ¢ is defined by g(w1) = 61, g(w2) = 02,

g(w3) = 0,.
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3.2 Invariance

Invariance theory has played a major role in the history of reference priors. Indeed, Laplace’s
principle of insufficient reason is an application of an invariance argument. In this section,
we review the key aspects of this approach to the selection of priors. Good descriptions of
the role of invariance are given by Dawid (1983), Hartigan (1964), and Jaynes (1968).

The simplest example of invariance is the permutation group on a finite set. Let O =
{61,...,0,} and let G be the set of permutations of the integers {1,...,n}. Write B = gA
if Ig = 140 g where I, is the indicator function for A and ¢ € G. If we have little
prior information then it seems natural to demand that the prior should be invariant under
permutations, i.e., P(A) = P(gA) for every A and every ¢ € G. This implies that P is the
uniform probability, and could be viewed as a formal expression of the Principle of Insufficient
Reason discussed in Section 3.1.

When the parameter space is infinite, the invariance arguments are more complicated.
We begin with the Normal location model. Suppose a statistician, S records a quantity X
that has a N(6,1) distribution, and has a prior 71(#). A second statistician Sy records the
quantity Y = X + a, with a being a fixed constant. Then Y has a N(¢,1) distribution,
where ¢ = 6+ a and let this statistician’s prior be m2(¢). Since both statisticians are dealing
with the same formal model — a Normal location model — their reference priors should be
the same. Thus, we require 7y = 73. On the other hand, since ¢ = 6 + a, 7; and 7y can
be related by the usual change of variables formula. The relationships between 7y and m;
should hold for every a and this implies that they must both be uniform distributions.

This Normal location model may be re-expressed in terms of group invariance. Each real
number @ determines a transformation h, : IR — IR defined by h,(x) = a + «. The set of
all such transformations H = {h,;a € IR} forms a group if we define h,hy, = hoqp. We say
that the model is invariant under the action of the group since X ~ N(0,1) and Y = h,(X)
implies that ¥ ~ N(h,(0),1). The uniform prior p is the unique prior (unique up to an
additive constant) that is invariant under the action of the group, that is, u(h,A) = p(A)
for every A and every a, where h, A = {h,(0): 0 € A}.

Now suppose that X ~ N(8,0%). Let H = {h,p;a € IR ,b € IRt} where h,y: IR — IR

14



is defined by hgp(x) = a + bx. Again, H is a group. Define another group G = {g.p;a €
IR ,b e IRT} where g, : IR X IRt — IR x IR is defined by ¢,,(0,0) = (a + b0, bo). Note
that the group G is formally identical to the parameter space for this problem. Thus, every
pair (0,0) € IR x IR" identifies both an element of the Normal family and a transformation
in (G. Now, as before, the model is invariant under the action of the group in the sense that
if X ~ N(#,0%) and Y = h,,(X) then Y ~ N(pu, A?) where (g, \) = g44(8,0). The prior P
that is invariant to left multiplication, i.e., P(g,sA) = P(A) for all A and all (a,b) € IR xIRT,
has density p(g,o) o 1/0?. This is the same prior we would get by using (1) but, as we
discussed in section 2, Jeffreys preferred the prior @ with density ¢(y,0) « 1/o. It turns
out that @ is invariant to right-multiplication, meaning that Q(Ag.;) = Q(A) for all A and
all (a,b) € IR x IRY, where Ag,p = {9509as;(0,0) € A}. The priors P and @ are called,
respectively, left Haar measure and right Haar measure.

The preceding arguments can be applied to more general group transformation models
in which the parameter space is identified with the group . In the simplest case, G is
transitive (for every 0y, 6 € O there exists g € (¢ such that 6y = ¢g6;) and acts freely (g6 = 0
for some 6 € O only if ¢ is the identity) on both © and the sample space, with X ~ P if and
only if ¢X ~ P,s. In this case the left and right Haar measures on G provide distributions
on O that are again unique (up to a multiplicative constant). Somewhat more complicated
cases occur when the group action on the sample space is either non-transitive or non-free.
Here, the sample space X may be identified with the product G x X' /G where X /G is the
“coset space”. See, for instance, Chang and Villegas (1986). In all of these situations, if
the group is non-compact and non-commutative, the left and right Haar measures may be
distinct. (See Nachbin, 1965, for details on Haar measures.) Jeffreys’s non-location prior
(1) is the left Haar measure (see, e.g., Dawid, 1983; this also follows from its derivation as a
volume element determined by a Riemannian metric, see, e.g., Kass, 1989).

Villegas (1981) made the following argument for the right Haar measure in the case in
which G is transitive and acts freely. Let A be a measure on the group . Choose a reference
point @ € ©. This defines a mapping ¢, : G — O by ¢,g = ga which induces a measure
7o = A¢ ' on O. If we insist that the measure 7, not depend on the choice of reference

point @ then 7 must be the right Haar measure. The argument generalizes to the case in
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which the sample space X' may be identified with the product G x X /G and Chang and
Eaves (1990, Proposition 4) show that different possible such decompositions lead to the
same right invariant prior.

Another argument in favor of right Haar priors comes from the demonstration by Stone
(1965, 1970) that a necessary and sufficient condition for an invariant posterior to be obtained
as a limit, in probability, of posteriors based on proper priors, is (under the assumption that
the group is amenable) that the prior is right Haar measure. (See section 4.2.1 for more
discussion on probability limits of proper priors.) Also, we note that posteriors based on
right Haar measure arise formally in a type of conditional inference called structural inference,
developed by Fraser (1968). Furthermore, the right Haar measure gives the best invariant
decision rule in invariant decision problems (Berger 1985 section 6.6.2)

Related to this is a result proved by Chang and Eaves (1968) that repeated-sampling
coverage probabilities and posterior probabilities agree when the prior on the group is right
Haar measure. (See Section 3.7.)

The invariance arguments may be replaced by weaker relative invariance arguments that
require proportionality rather than equality for statements of invariance. In particular, if
we want 7(A|X = x) = 7(¢ ' (A)]g~H(X) = g7 (2)) say, when © and O are related by a
transformation ¢, then we only need that #'(A) o< 7(¢7'(A)). The class of relatively invariant
priors is much larger than the class of invariant priors; see Hartigan (1964).

Sometimes the group action is not itself of interest but instead group elements correspond
to nuisance parameters, i.e., the full parameter vector is § = (w, g) where ¢ € GG and w is
the parameter of interest. Assuming w is an index for the orbits of the group (the orbit of «

is {gx;¢ € G}), Chang and Eaves (1990) recommend the prior #(w)n(g|w) where 7 (g|w) is

m(w) = lim v det([,(w))/n.

Here, I,(w) is the information matrix for y,, the maximal invariant of the G-action. This

right Haar measure and

is similar to the Berger-Bernardo approach except that Berger and Bernardo would use the

non-location Jeffreys prior (and hence left Haar measure) for 7 (g|w).
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3.3 Data-translated likelihoods

Box and Tiao (1973, Section 1.3) introduced the notion of “data-translated likelihood”
to motivate the use of uniform priors. Let y be a vector of observations and let L,(.) be
a likelihood function on a real one-dimensional parameter space ®. According to Box and
Tiao (1973, eqn (1.3.13)), the likelihood function is data translated if it may be written in

the form

Ly(¢) = [{o —ty)} (4)

for some real-valued functions f(.) and #(.), with the definition of f(.) not depending on y.
When (4) is satisfied, Box and Tiao recommend the use of the uniform prior on ® because
two different samples y and y* will then produce posteriors that differ only with respect
to location. That is, the uniform prior does not produce posterior densities with different
shapes for different samples. This feature of the uniform prior is, for Box and Tiao, what
makes it “noninformative.”

They then introduced “approximate data-translated likelihood” to motivate Jeffreys’s
general rule. For a likelihood to be approximately data translated, Box and Tiao require
it to be “nearly independent of the data y except for its location.” Operationally, they
discuss samples of size n consisting of independent and identically distributed observations

and begin with the Normal approximation to the likelihood

N

L,(0) ~ n(@;@,&i), (5)

2 and

where n(z;u,c?) is the Normal density with argument x, mean p and variance o
62 = {ni(0)}7*, the inverse of the expected Fisher information evaluated at the maximum
likelihood estimate 6. They then take ¢ to be a variance-stabilizing parameterization, that

is, 1(¢) = ¢ for some constant ¢, so that
Ly(@) = n(¢: 6, c/n). (6)
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The Normal approximate likelihood of (6) has the form (4), so that the likelihood itself is,
in a sense Box and Tiao do not make explicit, approximately data translated. Based on the
analogy with (4), they recommend the use of a prior that is uniform on ¢, and they note
that this prior is the one determined by Jeffreys’s general rule.

To see more clearly what Box and Tiao’s approach entails, notice that from (4) the
likelihood functions based on alternative data y and y* are translated images of one another

in the sense that

Ly(¢) = Ly*(¢*) (7)

for ¢* — ¢ + {t(y*) — t(y)}. Clearly, if (7) holds, the translation group may be defined
on ® and on the image of ¢(.) so that the likelihood function is invariant under its action.
Kass (1990) noted that, once seen from this group-theoretic perspective, the definition is
revealed to be very restrictive (if ® is the whole real line and the support of the distribution
is independent of ¢ then only the Normal and gamma families yield exactly data-translated
likelihoods). The concept is easily modified by requiring the likelihood to be data-translated
only for each fixed value of an ancillary statistic. When this is done, the definition extends to
general transformation models. Kass then showed that in one dimension likelihoods become
approximately data-translated to order O(n~!), which is stronger than the order O(n='/2)
implied by the data-translatedness of the limiting Normal distributions. A somewhat weak
extension of the result was given for the multidimensional case: likelihoods may be considered
approximately data-translated along information-metric geodesics in any given direction,
but it is not in general possible to find a parameterization in which they become jointly
approximately data-translated. (This is related to the inability to directly extend work of
Welch and Peers (1963) as discussed in Stein (1985); see Section 3.7.)

3.4 Maximum Entropy

If © ={64,...,0,} is finite and 7 is a probability function of O, the entropy of =, which is
meant to capture the amount of uncertainty implied by 7, is defined by () = — 3 7(¢)logn(¢).

Entropy is a fundamental concept in statistical thermodynamics and information theory
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(Shannon 1948, Wiener 1948, Ash 1965). The functional £(7) can be justified as a mea-
sure of uncertainty by appealing to three axioms (Shannon 1948). Priors with larger en-
tropy are regarded as being less informative and the method of maximum entropy is to
select the prior that maximizes £(x). If no further constraints are imposed on the prob-
lem then the prior with maximum entropy is the uniform prior. Suppose now that partial
information is available in the form of specified expectations for a set of random variables:
{E(X1) = mq,...,E(X,) = m,}. Maximum entropy prescribes choosing the prior that

maximizes entropy subject to the given moment constraints. The solution is the prior

m(0;) oc exp{}_ A X;(0;)}-

Jaynes (1957, 1968, 1980, 1982, 1983) has been the main developer of entropy based
methods. The method of maximum entropy has been very successtul in many problems
including, for example, spectral analysis and image processing. A recent review of entropy
based methods may be found in Zellner (1991). See also Zellner (1993), Zellner and Min
(1992) and Press (1993). There are, however, some problems with the theory. Seidenfeld
(1987) gives an excellent review and critique of maximum entropy. Here, we review the main
points discussed in Seidenfeld’s paper.

First, there is a conflict between the maximum entropy paradigm and Bayesian updating.
Consider a six sided die and suppose we have the information that F(X) = 3.5 where X is
the number of dots on the uppermost face of the die. Following Seidenfeld, it is convenient
to list the constraint set: Co = {F(X) = 3.5}. The probability that maximizes the entropy
subject to this constraint is Fy with values (1/6,1/6,1/6,1/6,1/6,1/6). Let A be the event
that the die comes up odd and suppose we learn that A has occurred. There are two
ways to include this information. We can condition Fy to obtain Fy(-|A) which has values
(1/3,0,1/3,0,1/3,0). On the other hand, we can regard the occurrence of A as another
constraint, namely, F(A) = 1. The probability ¢) that maximizes the entropy subject to the
constraint set €4y = {£(X) = 3.5, F(A) = 1} has values (.22,0,.32,0,.47,0) which conflicts
with Fo(-]A). One might conjecture that it is possible to refine the space under consideration

so that a constraint expressed as an expectation on a random variable may be re-expressed
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as an event. Perhaps, in this larger space, the conflict will disappear. But Friedman and
Shimony (1971) and Shimony (1973) have shown that, in general, there is no such possible
extension except in a trivial sense. They show that an extended space for which the constraint
is represented as an event and for which conditionalization is consistent with maximum
entropy, must be such that the constraint is given prior probability one. Seidenfeld shows
that the Friedman-Shimony result applies not only to entropy, but to minimum Kullback-
Leibler shifts from any given base measure; maximum entropy is obtained by taking the base
measure to be uniform.

The second problem is that maximum entropy is subject to the same partitioning paradox
that afflicts the principle of insufficient reason. Thus, in the die example, we can record, not
just the value of the upper face, but also whether the sum of all visible spots on side faces of
the die is less than, equal to, or greater than the value showing. For example, the outcome
(3, Less) means the top face shows 3 and the sum of visible side faces is less than 3. There
are 14 outcomes. Maximum entropy leads to a probability () that assigns probability 1/14
to each outcome. The marginal of () for the six original outcomes is not Fy. The problem is
then, which probability should we use, ) or Fy?

Entropy methods can be extended to the continuous case by measuring entropy relative
to a base density pu. Thus, the entropy of a density m with respect to p is — [ wlogmdpu.
Unfortunately, having to choose a base measure is no different than having to choose a prior
so that this solution is rather circular. Indeed, in the finite case, a uniform measure has
implicitly been chosen as a base measure. Jaynes (1968) suggests using base measures based

on invariance arguments.

3.5 The Berger-Bernardo Method

Bernardo (1979a) suggested a method for constructing priors that involved two innovations.
The first was to define a notion of missing information and the second was to develop a
stepwise procedure for handling nuisance parameters. Since Bernardo’s original paper, there
has been a series of papers, mostly by Berger and Bernardo, refining the method and applying

it to various problems. For this reason we refer to this method as the Berger-Bernardo
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method.

When there are no nuisance parameters and certain regularity conditions are satisfied,
Bernardo’s prior turns out to be (1). When there is a partitioning of the parameter into
“parameters of interest” and “nuisance parameters”, this method will often produce priors
that are distinct from (1). We shall discuss the notion of missing information first and then

the stepwise procedure.

3.5.1 Missing Information

Let X' = (Xy,...,X,) be n iid random variables and let K,(p(8]x]),p(0)) be the Kullback-
Leibler distance between the posterior density and the prior density: K,(p(8]z}),p(0)) =
[ p(0|a)log(p(8|x7)/p(0))dl. Loosely, this is the gain in information provided by the ex-
periment. Let K7 = E(K,(p(0]x}),p(0))) be the expected gain in information where the
expectation is with respect to the marginal density m(z7) = [ f(«7|0)7(0)df. experiment.
Bernardo’s (1979a) idea was to think of K for large n as a measure of the missing infor-
mation in the experiment. Bernardo (1979a) suggested finding the prior that maximizes
K7 = lim,_., K7 and called the result “the” reference prior. Since the term “reference
prior” had already been used by Box and Tiao (1973) following Jeffreys, we prefer to use it
in its more general sense. we shall stick to the name Berger-Bernardo prior. Hartigan (1983,
Section 5.2) uses the term maximal learning prior. The reason for not performing the above
optimization for finite n is that the priors turn out to have finite support (Berger, Bernardo
and Mendoza 1989).

Now a technical problem arises, namely, K7 is usually infinite. (In fact, the infinities can
occur for finite n; see Hartigan’s discussion of Bernardo 1979a). To circumvent this problem,
Bernardo finds the prior 7, that maximizes K. He then finds the limit of the corresponding
sequence of posteriors and finally defines the reference prior as the prior that produces the
limiting reference posterior via Bayes theorem. With sufficient regularity, this prior turns
out to be (1) for continuous parameter spaces and the uniform prior for finite parameter
spaces.

Another way around the infinities is simply to standardize K. Using asymptotic Nor-
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mality we have K7 = (d/2)log(n/2xe)+ [ w(0)log(\/det(I)/x(0))d0+0(1) as n — oo where d
is the dimension of #. See Ibrigamov and H’asminsky (1973) and Clarke and Barron (1990b).
Define the standardized expected distance K™ = K7 — (d/2)log(n/27e) and the standard-
ized missing information by j&jgo = lim,_ j&j;f = [7(0)log(y/det(I)/=(0))dh. A calculus of
variations argument shows that the standardized missing information is maximized by (1).
(More precisely, it is maximized by (1) if the space is truncated to an appropriate compact
set.)

When the data are not i.i.d. there is some question about how to do the asymptotics. A
recent discussion of this point is given in Berger and Yang (1992). They consider the AR(1)
process: X; = pX;_1 + ¢ where ¢, ~ N(0,1). There are two ways to do the asymptotics.
One can consider n vectors X', ... X" where each X' = (X!,..., X%) is a single run of T
observations from the process. Maximizing missing information and letting n go to infinity
gives the Jeffreys’s prior. This prior depends on T and so has strong sample space depen-
dence. Also, Jeffreys’s prior seems to put too much weight in the region of the parameter
space that corresponds to non-stationarity. If asymptotic missing information is maximized
instead for 7' — oo the prior is 7(p) o< (1 — p?)~"/2 if the problem is restricted to p € [—1,1].

If the parameter space is [a, b] with @ < —1 or b > 1 the prior is instead a discrete prior with

mass at the endpoints. An alternative prior, called the symmetrized reference prior is also

considered. This is defined by

{271 — p2}71 if |p| <1
{2r|plvT —p?}71 if [p| > L.

Clearly, for p € [—1,1] this is the Berger-Bernardo prior and the prior outside this range
is obtained by the mapping p — 1/p. Berger and Yang compared the sampling properties
of the point and interval estimates based on these priors and found that the symmetrized
reference prior performed better in mean-squared error and reasonably well in terms of
coverage. More importantly, this is an interesting example showing that the prior can depend
on how the asymptotics are carried out. This example has generated much debate among

econometricians. Phillips (1991) argues in favor of the Jeffreys’s prior. His article is followed
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by a series of papers in which several authors discuss the merits of various approaches.

3.5.2 Nuisance Parameters

Suppose that § = (w, \) where w is the parameter of interest and A is a nuisance parameter.
In this case, Bernardo suggests modifying his procedure. Ignoring some technical problems,
the method is as follows. First, define #(A|w) to be the Berger-Bernardo prior for A with w
fixed. Next, find the marginal model f(z|w) = [ f(a|w, A)7(Alw)dA. (The technical problem
is that the integral may diverge necessitating restriction to a compact set or a sequence of
compact sets.) Now take 7(w) to be the Berger-Bernardo prior based on the marginal model
f(z]w). The recommended prior is then 7(w)m(A|w).

Assuming some regularity conditions, it can be shown that the Berger-Bernardo prior is

7w, ) o Ju(\) exp{ [ u(A) log (e, AJdA}

where j,()) is the non-location Jeffreys prior for A when w is fixed (not to be confused with
J(A|w), the conditional of the non-location Jeffreys prior) and S = \/m Here, I is
the Fisher information matrix and [ is the portion of the I corresponding to the nuisance
parameters.

As an example, we consider the Neyman-Scott problem discussed in Berger and Bernardo
(1992b). The data consist of n pairs of observations: X;; ~ N(u;,0%), i =1,..., 5 =1,2.
The non-location Jeffreys prior is 7(p1, ..., pin, o) o< o=, Then E(o?|z) = s2/(2n — 2)
where s* = S, 2321(%]‘ —7;)? and T; = (241 + @:2)/2. Now E(c?|z) = s*/(2n — 2) is

2

inconsistent since s?/n converges to o, By treating o as the parameter of interest, the

Lin accordance with with

Berger-Bernardo method leads to the prior #(p1,..., py,0) x 0~
Jeffreys’s general rule (2); this gives a posterior mean of s?/(n — 2) which is consistent.
There are other Bayesian ways to handle this problem. One might, for instance, introduce
a hierarchical model by putting a distribution on the pls and then apply Jeffreys’s general
rule to the hyperparameters, based on the marginal distribution of the data. But this is an

example in which the Berger-Bernardo method yields a prior that seems reasonable when

judged by the long-run sampling behavior the posterior; see Berger and Bernardo (1992b).
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The Berger-Bernardo method has now been applied to many examples including expo-
nential regression (Ye and Berger 1991) multinomial models (Berger and Bernardo 1992a),
AR(1) models (Berger and Yang 1992) and the product of Normal means problem (Berger
and Bernardo 1989) to name just a few. Typically, this method leads to priors that are
There are now many papers with examples

In all the above discussion, we have lumped the parameters into two groups: parameter
of interest and nuisance parameters. Berger and Bernardo (1991, 1992a, 1992b) and Ye and
Berger (1991) have extended the method to deal with parameters that have been lumped into
any number of ordered groups. The ordering is supposed to reflect the degree of importance
of the different groups. Generally, different orderings produce different priors. One way to
assess the sensitivity of the posterior to the prior is to consider the priors arising from various
orderings of the parameters. If the posterior is similar for all these priors then we have some

evidence that the posterior is robust to the choice of prior.

3.5.3 Related Work

Ghosh and Mukerjee (1992a) and Clarke and Wasserman (1992, 1993) proposed alternatives
to the Berger-Bernardo method that use Bernardo’s missing information idea in a different
way. Specifically, they work directly with j&jgo (w), the standardized missing information for
w, i.e., the asymptotic expected Kullback distance between the marginal prior m(w) and the

marginal posterior m(w|X7) minus a standardizing constant:

R (w) ://p(w,)\)log ]%dwd)\

where S = {|I]|I2|~*}'/2, I is the Fisher information matrix and I, is the part of the Fisher
information matrix corresponding to .

Ghosh and Mukerjee (1992a) showed that maximizing K7 (w) subject to the condition
that 7(Alw) = ju(A) gives the Berger-Bernardo prior. Thus the Berger-Bernardo prior
maximizes the missing information for w subject to the condition that given w, the missing

information for A is maximized. But it seems reasonable to examine priors that maximize

K™ (w).
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Ghosh and Mukerjee conjectured, and Clarke and Wasserman showed, that priors that
maximize Kgo (w) typically are degenerate. Clarke and Wasserman proposed a tradeoff prior
T that maximizes Kgo (w) — aK (7, 7) where the latter term is a penalty term that measures
distance from a prior j where j is usually taken to be the Jeffreys prior or the non-location
Jeffreys prior. The interpretation is that we are trying to make the distance between the prior
for w and the posterior for w far apart but we add a penalty term to ensure that the prior does
no depart too far from j. Without the penalty term, degenerate priors can result. Generally,
7o cannot be written in closed form but Clarke and Wasserman (1993) gave an algorithm
for computing it. Ghosh and Mukerjee suggested shrinking towards a uniform prior. Later,
Clarke and Wasserman (1992) proposed maximizing j&jgo(w) — aK(x,7). The solution is
To < RH=YH) where h = SY%j(w, X)), H = [ hd), and, as before, S = y/|I|/|I22|. This
reduces to j when o — oo and, if S is a function of w only then it reduces to the Berger-
Bernardo prior when o« = 0. More generally, 7, converges to a degenerate distribution when
a | 0 but, strangely, may still agree with the Berger-Bernardo prior when a = —1.

The Berger-Bernardo program involves maximizing missing information for A given w,
then forming the marginal model and maximizing missing information for w. If w is the
parameter of interest then perhaps we should maximize missing information for w given
A. That would ensure that missing information is maximized for w whatever the vale of
the nuisance parameter. Berger (1992) notes that such a scheme may give results that are
similar to the coverage matching methods (section 3.7). Unfortunately, the prior will then

depend on the parameterization of the nuisance parameter.

3.6 Geometry

The straightforward verification of invariance of Jeffreys’s general rule hides its origin. In
outline, Jeffreys (1946, 1961) noted that the Kullback-Leibler number behaves locally like
the square of a distance function determined by a Riemannian metric; the natural volume
element of this metric is det(7(6))'/?; and natural volume elements of Riemannian metrics

are automatically invariant to reparameterization. See Kass (1989, sections 2.1.2 and 2.1.3)

for explication of this argument in the case of multinomial distributions.
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Jeffreys treated the procedure formally, but Kass (1989, section 2.3) elaborated, arguing
that natural volume elements provide appropriate generalizations of Lebesgue measure by
capturing intuition favoring “flat” priors; while the information metric may be motivated by
statistical considerations. Thus, the suggestion is that Jeffreys’s rule is based on an appealing
heuristic. The key idea here is that natural volume elements generate “uniform” measures on
manifolds, in the sense that equal mass is assigned to regions having equal volumes, and this
uniformity seems to be what is appealing about Lebesgue measure. Since Fisher information
is central in asymptotic theory, it seems a natural choice for defining a metric to generate a
distribution that would serve as a pragmatic substitute for a more precise representation of
a priori knowledge.

It is also possible to use this geometrical derivation to generate alternative priors by
beginning with some discrepancy measure other than the Kullback-Leibler number, and
defining a Riemannian metric and then a natural volume element. Specification of this idea
was given in unpublished manuscripts by Kass (1981) and George and McCulloch (1989). It
was also mentioned by Good (1969).

3.7 Coverage Matching Methods

One way to try to characterize “noninformative” priors is through the notion that they ought
to “let the data speak for themselves.” A lingering feeling among many statisticians is that
frequentist properties may play a role in giving meaning to this appealing phrase. From this
point of view it is considered desirable to have posterior probabilities agree with sampling
probabilities.

To be specific, suppose that 8 is a scalar parameter and that {(x) and u(x) are such that
Pril(z) < 0 <u(z)|x) =1 — a so that A, = [((x),u(x)] is set with posterior probability
content 1 —«. One can also consider the frequency properties of A, under repeated sampling.
In general, the coverage of A, will not be 1 — a. There are, however, some examples where
coverage and posterior probability do agree. For example, if X ~ N(6,1) and 6 is given
a uniform prior then A, = [z — n_l/Zza/z,:L' + n_l/zza/z] has posterior probability 1 — «

and also has coverage 1 — «, where Pr(Z > z.) = ¢ if Z ~ N(0,1). Jeffreys (1961) noted
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the agreement between his methods and Fisher’s in many Normal-theory problems; see also
Box and Tiao (1973). Lindley (1958) showed that for a scalar parameter and a model that
admits a real-valued sufficient statistic, the fiducial based confidence intervals agree with
some posterior if and only if the problem is a location family (or can be transformed into
such a form). A very general result for group transformation models, essentially due to
Stein (1965) but proved elegantly by Chang and Villegas (1986), is that repeated-sampling
coverage probabilities and posterior probabilities agree when the prior on the group is right
Haar measure. (See Section 3.2.) In multiparameter problems, it may be the case that
priors which lead to frequentist regions jointly, do not do so for each individual component
simultaneously. This point is discussed in the context of the multivariate Normal problem
by Geisser and Cornfield (1963).

We emphasize that some authors see the good frequentist properties of certain posterior
intervals as providing a vehicle for justifying certain non-Bayesian methods, but do not argue
that such properties in any sense justify the choice of a prior. Jeffreys (1961) is certainly in
this group, as are Box and Tiao (1973) and Zellner (1971). Others, however, such as Berger
and Bernardo (1989), Berger and Yang (1992, 1993) use coverage properties to discriminate
among alternative candidate prior distributions.

Sometimes it is not possible to get exact agreement (see Bartholomew 1965) and instead
we might seek approximate agreement. Let B, be a one-sided posterior region with posterior
probability content 1 — a. Welch and Peers (1963) showed that, under certain regularity
conditions, the confidence coverage of B, is 1 — a + O(n~'/?). However, if (1) is used then
the region has coverage 1 —a+O(n™!). Hence, another justification for (1) is that it produces
accurate confidence intervals.

This work was further examined and extended by Welch (1965), Peers (1965), Peers
(1968) and Stein (1985). Recently, there has been interest in extending the Welch-Peers
results when the parameter § has been partitioned into a parameter of interest w and nuisance
parameters A = (Aq,...,A\;). Some progress was made on this in Peers (1965) and Stein
(1985). Based on the Stein paper, Tibshirani (1989) showed that a prior that leads to

accurate confidence intervals for w can be obtained as follows. Let I denote the Fisher
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information matrix and let ¢ be the log-likelihood function. Write

]11 ]12
]21 ]22

I =

where [, = —F (8—2[) Iy is the k x k matrix with ¢j** entry —F ( Ii5 1s the & x 1

8/\8/\)

matrix with ;% entry —F (8 N, ) and Iy is the 1 x k matrix with ¥ entry —F (aiééw) )

Now, reparameterize the model as (w,7) where v = (v1,...,7x) is orthogonal to ~. Here
v = v(w, A1,..., Ak). Orthogonality means that [15 = Iy = 0; see Cox and Reid (1987).
Tibshirani suggests that the prior 7(w,v) g()\)llll/2 produces accurate confidence intervals
for w, where g(A) is an arbitrary, positive function of A. This result was made rigorous by
Nicolaou (1993). For comparison, note that (1) is 7 (w,~) ]111/2]1/2 and the Berger-Bernardo
prior (section 3.5) is 7 (w,v) x f(w)]zlz/2 for some function f(w). It is interesting that these
confidence based methods seem to produce priors of the form that would be obtained from
the Berger-Bernardo scheme if roles of the parameter of interest and nuisance parameter

were switched; Berger (1992) comments on this fact.

Ghosh and Mukerjee (1992a) suggest requiring that
/Pg(w < wa(X)F(AMw)dA = 1 — a + O(n~Y)
where w, is such that P(w < w,(X)|X)=1—a+ O(n™!). This leads to the condition

()

Mukerjee and Dey (1992) found priors that match frequentist coverage to order o(n™!)

and they give a differential equation that must be solved in order to find the prior. Tibshi-
rani’s method generally has solutions that leave part of the prior unspecified but in many
cases, the Mukerjee-Dey method completely specifies the prior up to a constant. Ghosh
and Mukerjee (1993) find priors such that P(W < t|X) = P(W < t|0) + o(n~'/?) for
all @ and t = (#1,...,1,) where W = (Wy,...,W,), Wi is an appropriately standardized
version of \/n(f; — él) and W; is a type of standardized regression residual of /n(6; — (91)
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on /n(f; — él), ceo/n(0—y — (9;_1). The priors are characterized as having to satisfy a
certain differential equation. The idea is that W is attempt to list the parameters in or-
der of importance in the spirit of the work by Berger and Bernardo. Severini (1991) shows
that under certain circumstances some priors will give HPD regions which agree with their

3/2 Similar calculations, but for which there is a

nominal frequentist coverage to order n~
scalar nuisance parameter, are considered in Ghosh and Mukerjee (1992b). DiCiccio and
Stern (1992) find conditions on the prior so that coverage and posterior probability content
agree to order n™% when both the parameter of interest and the nuisance parameter are
vectors. Connections between the Welch-Peers approach and frequentist approaches based
on the signed square root of the likelihood ratio statistic are made in DiCiccio and Martin
(1993). On a related topic, Severini (1993) shows how to choose intervals for which Bayesian
posterior probability content and frequentist coverage agree to order n=%/? for a fixed prior.
Also, connections can be made between priors that produce good frequentist intervals and

priors for which Bayesian and frequentist Bartlett corrections to the likelihood ratio statistic

are o(1); see Ghosh and Mukerjee (1992b).

3.8 Zellner’s Method

Let 1(0) = [ f(x]0)log f(x|f)dx be the information about X in the sampling density. Zell-
ner (1971, 1977, 1993) and Zellner and Min (1992) suggest choosing the prior 7 that max-
imizes the difference G = [I(0)x(0)d0 — [« (0)log(x(0))dh. (Note that the negative en-
tropy of the joint density of  and 0 is [ I(0)x(0)d0 + [ = (0)log(x(0))dd. Also note that
G = [ [x(0)z)log[f(x]0)/x(0)]m(x)d0dz where m(x) = [ f(x|0)x(0)dh.) The solution is
7(0) o exp{I(#)}. He calls this prior, the maximal data information prior (MDIP). This
leads to some interesting priors. In location scale problems, it leads to right-Haar measure.
In the binomial (n, #) model it leads to the prior 7(#) o #%(1 — #)'~¢ which has tail behavior
in between that of (1) which in this case is 7(0) o< #~/2(1 — #)~'/2, and the uniform prior.
MDIP priors for the Weibull are found in Sinha and Zellner (1990). Recently, Moulton
(1993) obtained MDIP priors for the ¢ family and the power exponential family.

Zellner’s method is not parameterization invariant. However, Zellner (1991) points out
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that invariance under specific classes of reparameterizations can be obtained by adding the
appropriate constraints. For example, if we are interested in the transformations n; = h;(8),

t=1,...,m then he suggests maximizing
G = [#(0)1(0)d0 — [ =(0)1ogm(0)d0 + 31 [ miln) I (m)dn — [ mi(n)log mi(n:)dn]
=1
subject to #(0)df = m;(n;)dn;. The solution is

7(0) o exp{1(0) + 3 log |(0)]/(m + 1)},

=1

The resulting prior then has the desired invariance properties over the given transformations.
Other side conditions such as moment constraints can be added too. Zellner’s prior can be
related to (1) in the following way (Zellner, personal communication): maximize Zellner’s
functional subject to the condition that the expected value of the log square root of the
Fisher information equals a constant. This leads to a prior proportional to j*(0)exp{I(0)}

where X is a constant and j is from (1).

3.9 Decision-Theoretic methods

Several authors have used decision theoretic arguments to select priors. Chernoff (1954)
derives the uniform prior on finite sets by way of eight postulates for rational decision making.
Partitioning paradoxes are avoided since his argument is restricted to sets with fixed, given
number of outcomes. Good (1969) takes a different approach. He defines U(G|F') to be “the
utility of asserting that a distribution is G when, in fact, it is F'.” He shows that if U takes
on a particular form then (1) is the least favorable prior distribution. Good also relates this
idea to Jeffreys’s geometrical argument; see Section 3.6. See also Clarke and Barron (1990).

Hartigan (1965) calls a decision d(x) is unbiased for the loss function [ if
Ego (L(d(),0)[00) = Eg, (L(d(),00)00)

for all 4, 6y. Hartigan shows that, if § is one-dimensional, a prior density h is asymptotically
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unbiased if and only if
M6) = B(9/00log F(o10))/(9% |06 L(0, )L

If the loss function is Hellinger distance, this gives (1). Hartigan also extends this to higher
dimensions.

Gatsonis (1984) considers estimating the posterior distribution as a decision problem
using [, distance as a loss function. The best invariant estimator of the posterior in a
location problem is the posterior obtained from a uniform prior. He also shows that this
estimate is inadmissible for dimension greater than 3.

Bernardo’s method (section 3.5) may also be given a decision theoretic interpretation.
Specifically, the Kullback-Leibler distance can be justified by viewing the problem of report-
ing a prior and posterior as a decision problem. Bernardo (1979b) shows that Kullback-
Leibler divergence is the unique loss function satisfying certain desiderata. Polson (1988)
also discusses this approach.

Kashyap (1971) considers the selection of a prior as a 2-person zero sum gum against
nature. Using the average divergence between the data density and the predictive density
as a loss function, he shows that the minimax solution is the prior 7(6#) that minimizes
FElogp(y|0)/m(0) where the expectation is with respect to the joint measure on y and .
Asymptotically, this leads to (1). This is very similar to Bernardo’s (1979a) approach.

3.10 Rissanen’s Method

Consider the problem of finding a reference prior for ©® = {1,2,...}. Many familiar tech-
niques, like maximum entropy (3.4) do not give meaningful answers for finding a prior on ©.
Jeffreys (1961, p. 238) suggested Q)(n) o 1/n though he did not derive it from any formal
argument.

Rissanen (1983) used the following coding theory motivation for a prior. Suppose you
have to construct a code for the integers, that is you must assign a binary string to each
integer. We assume that your code is a prefix code, which means that no codeword is allowed

to be a prefix of another another codeword. This condition ensures that a decoder can detect
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the beginning and end of each codeword. Let L = (L(1), L(2),...) be the codeword lengths.
An adversary will choose an integer from a distribution P. Your task is to assign the codes
so that the code lengths are as short as possible. More formally, you must try to minimize
the inverse of the code efficiency which is defined to be the ratio of the mean code length to

the entropy. This optimization problem can be expressed as

LS PGILG)
mmsup 111 —.
B N TR P log P(1)

The optimization is carried out subject to

(i) P( ) < 1 for all ¢ and the sequence P(1), P(2),... is eventually decreasing,

(i) = 5= P(i)log P(i) =

(ii )0<L()<L(i—|—1)f0ralliand

(iv) S 27F0) < 1.

The last condition is called the Kraft inequality and is necessarily satisfied by a prefix
code. Rissanen shows that there is a code with code lengths Lo(n) = log™(n) + log ¢ where
log*(n) = logx + logloga + ... where only the finitely many terms of the sum that are
positive are included and ¢ ~ 2.865064. Furthermore, any optimal length [ satisfies logn <
L(n) <logn-+r(n) where r(n)/logn — 0 and r(n) — oo as n — oo. Rissanen then suggests
we adopt Q(n) = 2710(") ag a universal prior for the integers. The Kraft inequality implies
that the prior is proper. Since Q(n) « (1/n) x (1/logn) x (1/loglogn)--- we see that this
will be close to the improper prior suggested by Jeffreys.

Rissanen’s prior is interesting and might well be useful in some problems. There are
some problems with the prior, however. First, there does not seem to be any convincing
argument for turning the code length L into a prior. Second, since the prior is proper, we
can find a constant ng such that Q({1,...,n0}) &~ 1 and in certain problems this will not be
appropriate. Finally, note that any prior of the form R(n) « (1/0)Q(n /o) has the same tail

behavior as Rissanen’s prior and could equally well be used in place of Q(n).
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3.11 Other Methods

Novick and Hall (1965) define an “indifference prior” by identifying a conjugate class of priors
and then selecting a prior from this class that satisfies two properties: first, the prior should
be improper; second, a “minimum necessary sample” should induce a proper posterior. In a
binomial problem for example, with the class of Beta priors, they obtain the prior {p(1—p)}~!
as an indifference prior. This prior is improper, but a single success and a single failure induce
a proper posterior. Novick (1969) considers extensions to multiparameter problems.

Hartigan (1971, 1983 section 5.5) defines the similarity of events £ and F' by S(F, F') =
P(ENF)/(P(F)P(F)). For random variables X and Y with joint density fyy and marginal
densities fx and fy the definition is s(x,y) = fxvy(a,y)/(fx(x)fy(y)) whenever the ratio is
well-defined. Then (1) can be justified in two ways using this approach: it makes present and
future observations have constant similarity, asymptotically and it maximizes the asymptotic
similarity between the observations and the parameter.

Piccinato (1978) considers the following method. A point & is a representative point
of the probability P if ¢(&, P) is minimized by & where ¢ is some discrepancy measure; an
example is ¢(&, P) = [ |6 — z|*dP. A predictive distribution f(y|z) is conservative if the
data point is always a typical point. The prior is called noninformative if it produces a
conservative prediction. In a binomial problem with conjugate priors, and using the mean
as a typical point, we the prior {#(1 — 6)}~'. A Normal with a Normal-gamma prior gives
m(p, o) o< 075,

Using finitely additive priors for an exponential model, Cifarelli and Regazzini (1987)
show that a large class of priors give perfect association between future and past observations

in the sense that there are functions ¢, : IR* — IR such that
P(Xy <a,¢0,(X1,....X,) <a)=P(Xy <2)=P(o(X1,.... X)) < )

forall N >n,n=1,2,... and = € IR. Under certain conditions, they show that the only
prior that gives E(Xy|Xi,...,X,) = X, is the usual improper uniform prior. In a related
paper, (Cifarelli and Regazzini 1983) these authors show that the usual conjugate priors for

the exponential family are the unique priors that maximize the correlation between Xy and
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X, subject to fixed values of Var(E(X,|0))/Var(X,).

Spall and Hill (1990) define a least informative prior by finding the prior that maximizes
expected gain in Shannon information. They approximate this by only looking over convex
combinations of a set of base priors. As shown in Berger, Bernardo and Mendoza (1989),
maximizing this measure can lead to discrete priors. Indeed, this is why Berger and Bernardo

maximize this quantity asymptotically.

4 Issues

In this section we discuss four general issues beginning, in Section 4.1, with the interpretation
of reference priors, where we argue that it is not necessary to regard a reference prior as being
noninformative for it to be useful. Reference priors are often improper and may depend on
the experimental design. We discuss consequences of these characteristics in Sections 4.2 and
4.3, respectively. In Section 4.4 we consider the possibility of performing sensitivity analysis

in conjunction with the use of reference priors.

4.1 Interpretation of reference priors

At the risk of over-simplification, it seems useful to identify two interpretations of reference
priors. The first asserts that reference priors are formal representations of ignorance; the
second asserts that there is no objective, unique prior that represents ignorance. Instead,
reference priors are chosen by public agreement, much like units of length and weight. In
this interpretation, reference priors are akin to a default option in a computer package. We
fall back to the default when there is insufficient information to otherwise define the prior.
Let us pursue the second interpretation a bit further. In principle, we could construct a
systematic catalogue of reference priors for a variety of models. The priors in the catalogue
do not represent ignorance. Still, the priors are useful in problems where it is impractical to
elicit a subjective prior. The statistician may feel that the reference prior is, for all practical
purposes, a good approximation to any reasonable subjective prior for that problem.

The first interpretation was, at one time, the dominant interpretation and much effort
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was spent trying to justify one prior or another as being noninformative (see section 2).
For the most part, the mood has shifted towards the second interpretation. In the recent
literature, it is rare that anyone makes any claim that a particular prior can logically be
defended as being truly noninformative. Instead, the focus is on investigating various priors
and comparing them to see if any have advantages in any practical sense. For example,
Berger and Bernardo (1989) consider several priors for estimating the product of two Normal
means. Rather than defending any particular prior on logical grounds, they instead compare
the frequency properties of the credible regions generated by the priors. This is an example
of using an ad-hoc but practically motivated basis for defending a reference prior instead of
a formal logical argument.

A slight variant on the second interpretation is that, although the priors themselves do
not formally represent ignorance, our willingness to use a reference prior does represent
our ignorance — or at least it is acting as if we were ignorant. That is, according to this
interpretation, when we decide to use a reference prior, the decision itself may be regarded
as an admission of ignorance in so far as we are apparently unable (or we act as if we were

unable) to determine the prior subjectively.

4.2 Impropriety

Many reference priors are improper, that is, they do not integrate to a finite number. In this
section we discuss five problems caused by improper priors: (i) incoherence and strong in-
consistencies, (ii) the dominating effect of the prior, (iii) inadmissibility, (iv) marginalization

paradoxes and (v) impropriety of the posterior.

4.2.1 Incoherence, Strong Inconsistencies and Non-conglomerability

An example from Stone (1976, 1982) nicely illustrates potential inconsistencies in using
improper priors. Suppose we flip a four sided die many times. The four faces of the die
are marked with with the symbols {a,b,a™, b7}, respectively. Each time we toss the die
we record the symbol on the lowermost face of the die — there is no uppermost face on a

four-sided die. The tosses result in a string of letters. Any time the symbols ¢ and a™!
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are juxtaposed in our list, they “annihilate” each other, that is, they cancel each other out.
Similarly for b and b~'. For example, if we tossed the die four times and obtained (a b b~ a),
then the resulting string is (a @) since b and b~! annihilate each other. Denote the resulting
string by 6. (To avoid annoying edge effects, we will assume that the length of 8 is large so
that the possibility of a null string is eliminated.) Now we suppose that one additional toss
of the die is made and the resulting symbol is added to #. The annihilation rule is applied,
if appropriate, resulting in a new string x. The problem is to infer § from .

Having seen x we note that there are four possible values for 8, each with equal likelihood.
For example, suppose = (a a). The extra symbol added by the last toss was either a, a™*,
bor b~* each with probability 1/4. So, 8 is one of (a), (a @ @), (a a b™) or (a a b) each having
likelihood 1/4. If we adopt a flat prior on # and formally apply Bayes rule the posterior will
give probability 1/4 to each of these points and will have zero probability elsewhere. Denote
the mass function of this posterior by 7(0|x). Let A be the event that the last symbol selected
resulted in an annihilation. We see that P(A|x) = 3/4 for every x. On the other hand, for
fixed 6, a new symbol results in annihilation with probability 1/4, i.e. P(A|f) = 1/4 for every
6. These two probability statements are contradictory. Since P(A|x) = 3/4 for every x it
seems we should conclude that P(A) = 3/4. But since P(A|f) = 1/4 for every 0 it seems we
should conclude that P(A) = 1/4. Stone called such a phenomenon a strong inconsistency.
It is also an example of a super-relevant betting procedure (Robinson 1979a, 1979b) and is
related to a consistency principle in Bondar (1977).

To see what went wrong, let us think about the improper prior as a limit of proper priors.
Let 7, be uniform on all strings of length p. It can be shown that, for fixed x, 7,(A|x) tends
to 3/4 as p — oo. It is tempting to argue that the posterior is valid since it approximates
the posterior using the proper prior 7,. But 7, induces a marginal probability m, on x
my(x) = g f(x]0)7,(0). Let X, be the set of 2’s of length p or p+1. When = € X,, 7,(8|x)
is concentrated on a single point and so 7(6|x) is a terrible approximation to 7,(8|xz). Recall
that 7(8|x) gives equal mass to four points. The total variation distance between 7(-|z) and
7p(+]2) is thus 3/4 for € X,. Stone showed that m,(X,) tends to 2/3; this is the essence of
the problem. Although 7,(-|x) converges to 7(-|x) for fixed x, it does not follow that the two
are close with increasingly high probability. This led Stone to suggest that we should seek
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posteriors with the property that the total variation distance between the formal posterior
based on an improper prior and the posterior from a proper prior should tend in probability
to 0 for some sequence of proper priors; see Stone (1963, 1965, 1970).

It turns out that strong inconsistencies and Stone’s proposal for avoiding them, are
closely tied to the notion of coherence developed in a series of papers by Heath, Lane and
Sudderth (HLS) (Heath and Sudderth 1978, 1989, Lane and Sudderth 1983). (Their notion
of coherence is slightly stronger than the notion of coherence introduced by de Finetti (1937,
1972, 1974, 1975). In their framework, probabilities are allowed to be finitely, rather than
countably additive. To see the difference between finitely additive priors and improper priors
let P, be the uniform measure on [—n,n| and define P by P(A) = lim,—, P,(A) for all A
for which the limit exists. P is an example of a finitely additive prior on the real that is
diffuse in the sense that it gives zero probability to every compact set. On the other hand,
P is proper since P(IR) = 1. Compare this to Lebesgue measure y which gives positive
measure to many compact sets but which is improper since p(IR) = co. One way to connect
these two concepts in practice is to start with an improper prior and, as in the example just
considered, generate a finitely additive prior by way of a limit of truncated proper priors.

Formally, the HLS approach, which is inspired by Freedman and Purves (1969), begins
with a sample space & and a parameter space ©. Let B(X) and B(0) be o-fields on these
spaces. A model is a collection of probabilities {pg;0 € O} on B(X). An inference is a
collection of probabilities {¢,; 2 € X'} on B(O). For a bounded function ¢ and a probability
P write P(¢) = [ ¢dP.

A prior # on © defines a marginal m on the sample space X' by way of the equation
m(¢) = [pe(d)r(df) for all bounded ¢ : X — IR. An inference is coherent if it is not
possible to place a finite number of bets, using odds based on ¢,, to guarantee an expected
payoff that is greater than a positive constant, for every §. Heath and Sudderth (1978) show

that an inference {q,;x € X'} is coherent if and only if there exists a prior # such that
[ [ ét0.0patdw)n(as) = [ [ 6(0,2)q.(d8)m(dz)
for all bounded ¢ : © x X — IR that are measurable with respect to B(0) x B(X), where
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m is the marginal induced by the prior 7. This means that the joint measure can be
disintegrated with respect to the # partition or the = partition without contradiction. We
call ¢, a posterior of m. Heath and Sudderth (1989, Theorem 3.1) prove that an inference
{@s;x € X'} is coherent if and only if it can be approximated by proper priors in the sense
that inf [ ||¢g. — ¢z||m(dx) = 0 where the infimum is over all (proper but possibly finitely
additive) priors 7 where ¢ is the posterior of 7, m is the induced marginal and || - || is
total variation norm. This is Stone’s proposed condition except that HLS allow for finitely
additive distributions. Coherence, in the HLS sense, is essentially the same as requiring
that there be no strong inconsistency; see Lane and Sudderth (1983). It is worth noting
that incoherence can arise in standard statistical models. For example, Faton and Sudderth
(1993a) recently showed that the right Haar prior for MANOVA models gives an incoherent
posterior. Another example of incoherence for commonly used priors is given in Eaton and
Sudderth (1993b).

In fact, incoherence and strong inconsistencies are manifestations of a phenomenon called
non-conglomerability which plagues every probability measure that is finitely but not count-
ably additive. A probability P is conglomerable with respect to a partition B if for every
event A, ky < P(A|B) < ky for all B € B implies that ky < P(A) < ky. The Stone example
exhibits non-conglomerability for the following reason. Since P(A|z) = 3/4 for all x, con-
glomerability would imply P(A) = 3/4. Similarly, P(A|f) = 1/4 for all § implies P(A) = 1/4.
This contradiction implies that either the x partition or the # partition or both must display
non-conglomerability. The import of HLS coherence is to rule out non-conglomerability in
the § and = margins. But we should not be sanguine just because conglomerability holds in
these two margins. For one thing, HLS coherence is not always preserved under conditioning
or under convex combinations (Kadane, Schervish and Seidenfeld 1986). Furthermore, HLS
coherence only guarantees protection from nonconglomerability in the 6§ and z partitions of
the joint space © x X. There is no guarantee that other strong inconsistencies cannot occur
in other margins. In fact, every finitely additive probability that is not countably additive
displays non-conglomerability in at least on margin (Schervish, Seidenfeld and Kadane, 1984;
Hill and Lane, 1986).

The HLS approach is only one among many ways to strengthening De Finetti’s notion
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of coherence. Other related ideas have been considered by many authors, among them
are: Akaike (1980), Berti, Regazzini and Rigo (1991), Buehler (1959), Buehler and Fedder-
sen (1963), Bondar (1977), Brunk (1991), Dawid and Stone (1972, 1973), Hartigan (1983),
Pierce (1973), Regazzini (1987), Robinson (1978, 1979a,b), Seidenfeld (1981) and Wallace
(1959). One particular alternative that is worth mentioning is the notion using uniform
approximations. For example, Mukhopadhyay and Das Gupta (1993) showed the following:
consider a location families that possess a moment generating function. Let 7% be the pos-
terior using a flat prior. For every e > 0 there exists a proper, countably additive prior ¢
with posterior ¢* such that d(7”, ¢”) < € for all . (This implies HLS coherence). It remains

an open question how far this approach can be taken.

4.2.2 The Dominating Effect of the Prior

Sometimes, reference priors can overwhelm the data even though the posterior is HLS co-
herent. A famous example of this is the many Normal means problem. Let X; ~ N(6;,1)
independently, where ¢ = 1,...,n and consider the problem of estimating £ = > 67. If we
adopt a flat prior on § = (64,...,6,)" then the posterior for § is multivariate Normal with
mean X = (Xy,...,X,) and covariance equal to the identity matrix /. This posterior is
coherent in the sense described in section 4.2.1. The posterior Q(d{|x) for £ is a non-central
x? with n degrees of freedom and non-centrality parameter Y = 3°; X?; we denote this by
£lz ~ x2(Y). Hence, £ = E(¢]X1,...,X,) =Y 4+ n. There are reasons for thinking that £ is
too large, as we now discuss.

Let 6 have a N(0,al) prior. The posterior Q) (d¢|x) for £ is such that & ~ [a/(a + 1)] -
X2(aY/(a+1)). The posterior ) approximates (), when « is large but the means of ) and @,
are quite different. In fact, the expected value of éa = Fg, (&) with respect to the marginal
m, for @ induced by the N(0,al) prior is éo =Y —n. (This is also the U.M.V.U.E. for this
problem.) This suggests that we can expect éa to be close to éo. Perlman and Rasmussen
(1975) confirm this intuition by showing |& — &,| = 0,(v/n) and |€ — &| = o0,(y/n) + 2n. In
summary, Q(dé|z) and Q. (d¢|x) tend to be close in distributional distance but their means
are not close. (There is no contradiction between these two statements: if Z; ~ N(0,a?)

and Zy ~ N(1,a?) then F(Z,)— E(Z;) = 1 for all a but the total variation distance between
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the two distributions tends to 0 as ¢ — oo.) This shows that closeness in distributional
distance, which is what coherence is all about, may not be strong enough to avoid undesirable
properties.

Similar problems occur with interval estimation for {. Under the posterior (), a one-
sided a-level credible region for ¢ is [®,,(Y),00) where P(x2(Y) > ®,,(Y)) = a. Stein
(1959) shows that the coverage probability of this interval tends to 0 as n — oo. The
strong disagreement with the confidence level suggests something is amiss. (In his proof,
Stein assumes that ¢ = o(n?) which, it might be argued, is implicitly assuming some prior
information; indeed, Pinkham (1966) shows that if instead £ = Mn” + o(1) where M > 0
and h > 2 then the coverage and posterior probability agree asymptotically.)

What are we to make of this? The problem is that a posterior () based on an improper
prior may have moments quite different from a posterior (), based on a proper prior even
though ) and (), may be close in distributional distance. Generally, this problem is not
serious unless the dimension of the parameter space is large. The message from this and
similar examples is that improper priors must be used with care when the dimension of the
parameter space is large. Of course, that does not imply that subjective priors are necessarily
any better in these problems. As long as the dimension is large and the data set is small, all

priors must be used with care.

4.2.3 Inadmissibility

Under certain conditions, Bayes estimators based on proper priors lead to admissible esti-
mators but that improper priors can lead to inadmissible Bayes estimators. Consider the
many Normal means problem from the previous subsection. Stein (1956) showed that the
posterior mean using a flat prior is an admissible estimator of # under squared error loss if
n > 3. Thus, if L(0,8) = >(0; — &)* then the Bayes estimator arising from the flat prior,
namely, X = (X71,...,X,) is such that there exists another estimator v = (y1,...,7v,)" with
the property that EgL(0,7v) < EgL(0, X) for every 6, with strict inequality for at least one
6. (In fact, one can construct estimates that uniformly beat X.)

Although, X isinadmissible in the many Normal means problem, it is extended admissible

(Heath and Sudderth 1978). This means that there does not exist an € > 0 and an estimator
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6o such that EyL(8,60) < FglL(0,X) — € for all §. Thus, there is no estimator that beats
X uniformly. In general, every Bayes rule is extended admissible (even if the prior is only
finitely additive). If the loss function is bounded and the set of decision rules is convex then
every extended admissible rule is Bayes (Heath and Sudderth 1978, Theorem 2). But, as we
have seen, this does not guarantee admissibility.

Eaton (1992) gave conditions under which the Bayes rule from an improper prior produces
admissible decision rules for a class of decision problems called “quadratically regular decision
problems.” He showed that these conditions are equivalent to the recurrence of a Markov
chain with transition function R(df|n) = [y Q(df|x)P(dx|n) where X is the sample space,
(Q(df|z) is the posterior and P(dx|f) is the sampling model. He shows that some prediction
problems are included in this class of decision problems.

Another approach to choosing priors is to look for priors that are on the “boundary be-
tween admissibility and inadmissibility.” This approach is considered in Berger and Straw-

derman (1993).

4.2.4 Marginalization Paradoxes

Suppose we have a model f(z|a,3) and prior (e, 7) and the marginal posterior 7 (a|z)
satisfies w(a|r) = 7(a|z(x)) for some function z(x). If f(z|a, B) = f(z|a) but f(z|a)r(a) is
not proportional to 7(«a|z(x)) for any 7(«), then we have marginalization paradox since it
seems we should be able to recover m(a|z) from f(z|a) and some prior p(«). Dawid, Stone
and Zidek (1973) present many examples. Here, we consider example 1 from that paper.
Xi,..., X, are independent exponential random variables. The first ¢ have mean 1/7
and the rest have mean 1/(en), with ¢ # 1 known and ¢ € {1,...,n — 1}. The prior for n
is taken to be uniform. Let z; = z;/x1, ¢ = 1,...,n. It turns out that the posterior is a

function of z = (z1,..., z,) only. The probability density for z is
3 n
fzn, &) = fzl6) o< | D zited z) et
1 E+1

which is a function of ¢ only. But there is no choice of prior (&) that makes f(z|{)m(¢)
proportional to m({|x).
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This contradiction can happen only if the prior is improper. An analysis of the problem
is contained in Dawid, Stone and Zidek (1973) and the ensuing discussion; also, see Hartigan
(1983, page 28-29). Of course, the problem is that we cannot expect the rules of probability
to hold when the measure has infinite mass. Sudderth (1980) shows that the marginalization
paradox cannot happen if we treat improper priors as finitely additive priors and manipulate
the probabilities carefully, according to the rules of finitely additive probability. An interest-
ing debate about the meaning of this paradox is contained in Jaynes (1980) and the ensuing

discussion by Dawid, Stone and Zidek.

4.2.5 Improper Posteriors

Sometimes, improper priors lead to improper posteriors. Consider the following hierarchical

model:
Yz’|#i70 ~ N(:uivaz)
pilr ~ N(p,7?)
for i = 1,...n where 0% is known. A seemingly natural choice for a prior is 7(p,7) o< {7}7*

but this leads to an improper posterior (Berger 1985, p. 187).

In this problem application of Jeffreys’s general rule, based on the marginal distribution
of the data, i.e., Y; ~ N(u,c? + 72), leads to a proper posterior (cf. the discussion of one-
way ANOVA in Box and Tiao, 1973). It does so in many other problems as well, but there
are counterexamples (in which Jeffreys’s general rule leads to an improper posterior) and
there are as yet no simple general conditions to ensure propriety. Ibrahim and Laud (1991)
give conditions that guarantee proper posteriors for generalized linear models. Dey, Gelfand
and Peng (1993) extend this work for some overdispersed generalized linear models. Results
that apply in greater generality have not been discovered. For the most part, characterizing
improper priors that give proper posteriors remains an open problem.

Sometimes, improper posteriors will reveal themselves by creating obvious numerical

problems but this is not always the case. Because of increased computing power, analysts
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use models of ever greater complexity which in turn makes it more difficult to check whether
the posterior is proper. It would be helpful to have a diagnostic for detecting impropriety.
One way to avoid improper posteriors is to use proper priors. But this may not solve the
problem. In situations where intuitively reasonable priors give rise to improper posteriors,
it is often a sign that the likelihood is not highly informative. A proper prior might formally
produce a proper posterior but it is likely that the posterior will be very sensitive to the
choice of prior. Thus, situations in which improper posteriors arise from familiar reference

priors must be treated with care.

4.3 Sample Space Dependence

Another problem with reference priors is that they are often dependent on the sample space,
sometimes called “design dependent” or “experiment dependent”. For example, if we obtain
several replications of a Bernoulli experiment, then (1) will depend on whether we used
binomial sampling or negative binomial sampling. This is not only odd from the subjectivist
point of view but is generally considered undesirable since it violates the likelihood principle,
which states that two experiments that produce proportional likelihoods should produce the
same inferences (Berger and Wolpert 1988). It could be argued that the choice of design is
informative and so the prior should depend on the design. Nonetheless, design dependence
leads to some problems.

Aside from violating the likelihood principle, sample space dependent priors lead to
situations where the posterior depends on what order we receive the data. Yet, for a fixed
prior, we get the same posterior no matter what order the data are processed, assuming
independence. Suppose Xj is the number of successes in n tosses of a biased coin with

~1/2 and the posterior is 71 (p|X;)

success probability p. Then (1) gives 7(p) oc p~'/2(1 —p)
p1=V2(1 —p)n=X1=1/2_ Now suppose we flip the coin until another head appears and suppose
this takes r tosses. Using m; as a prior and updating to include the new information we
get the posterior my(p|Xy,r) oc pX1+1=1/2(1 — pyn=Xi47=1=1/2 " On the other hand, if we
did the experiment in reverse order, we would begin with (1) for the negative binomial,
-1/2

namely, 7(p) o< p~'(1 — p) Updating sequentially on X, then X; gives the posterior
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Xl‘l'l_l(l )n—X1+T—1—1/2

ma(p| X1,7) x p —p so we get a different posterior depending on what
order we process the data.

Another type of sample space dependence is illustrated by right Haar priors (section
3.2). Consider the following example from McCullagh (1992). Let 4,...,x, have a Cauchy
(yt, 0) distribution. The right Haar prior is m(p,0) o< 1/o. Now, let y; = 1/z;, 0 = 1,...,n.
Then, the y;’s are distributed as Cauchy (v, 7) where v = u/(p* + o*) and 7 = o/(p? + o?).
Right Haar measure for (v,7) is w(v,7) o 1/7. Transforming to (u,o) we get m(p,0) x
1/(o(p* + %)) which differs from the first prior. Thus, our choice of prior will depend on
how we choose to represent the sample space. Put another way, we can get different right
Haar priors depending on how we label the sample space.

Zellner (1993) has pointed out that his method (3.8) can explicitly handle design de-

pendence by maximizing average information in a set of experiments simultaneously. This

results in the geometric mean of the Zellner priors from each experiment.

4.4 Sensitivity Analysis

There now exists a substantial literature on sensitivity analysis in Bayesian inference. Exten-
sive references are contained in Berger (1984, 1990), Walley (1991) and Wasserman (1992).
Most of this work is directed at quantifying the sensitivity of the posterior to the choice of
prior and assumes that prior is a proper, subjectively elicited prior or that at least some
features of the prior have been subjectively elicited. There is virtually no work on sensitivity
analysis with respect to reference priors.

Sensitivity analysis often proceeds by embedding the prior 7 in a large class of similar

priors I'. The simplest and class of priors is the ¢ contaminated class defined by

I.(7)={(1 — )7 +eQ;Q € P}

where P is the set of all priors and € € [0, 1] represents the uncertainty in the prior. If ¢(8)
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be some function of interest it is straightforward to compute

E (gly)= inf FEp(glz) and FE.gly)= sup Ep(g|v).
Pele(m) Pel(r)

These bounds may be plotted by ¢ so we can assess the sensitivity to the prior. Now consider
a N(0,1) model with #(8) o c¢. An obvious way to use existing sensitivity techniques is to
regard the posterior to be the limit of the posteriors obtained from the sequence of priors 7,
as ¢ — 0o where 7, is uniform on [—a, a]. As noted in section 4.2.1 this notion can be made
rigorous by using probability limits of posteriors though we shall not worry about that here.

It turns out that I, (f|y) = —occ and E.(0]y) = oo if we define

E.(0y) = lim Pesru](o )Ep((9|y).

Apparently, this is not a useful way to proceed.

This does not rule out the possibility of finding some other neighborhood structure that
produces finite bounds for improper priors. DeRobertis and Hartigan (1981) found such a
class defined in the following way: let I'; be all prior densities p such that

for almost all 6, ¢ where k varies from 1 to co. We call this a density ratio class. (They
considered a more general class but we shall confine our attention to this special case.) Again
it 1s easy to compute upper and lower bounds on posterior expectations. Even when =« is
improper, the bounds are usually finite and are easy to calculate. But this class achieves this
pleasant behavior at the cost of being unrealistically small. For example, a I'; neighborhood
of a N(0,1) will never contain a N(a,1) density if a # 0, no matter how large k is.

All this leads to the following question: Is there a class that is larger than the density ratio
class and that gives non-trivial bounds on posterior expectations if we interpret the posterior
as a limit of posteriors from proper priors? The answer is no. Wasserman (1992) showed
that, subject to certain regularity conditions, any class that gives finite bounds for improper

priors is contained in a density ratio class. Current work with C. Srinivasan is aimed at
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building classes of priors by defining norms directly on the space of improper priors. It is

too early to know how successful these techniques will be.

5 Discussion

Reference priors are a part of Bayesian statistical practice. Often, a data analyst chooses
some parameterization and uses a uniform prior on it. Logical difficulties with this procedure
prompted Jeffreys’s search for alternatives, which led to the developments we surveyed here.

Jeffreys’s notion was that a prior could be chosen “by convention” as a “standard of
reference”. (We did not wish to imply an interchangeability of alternatives, and thus avoided
the term “conventional prior”; for a philosophical discussion of the notion of conventionality
see Sklar, 1976 p. 88-112.) The term “reference prior” is intended to connote standardization.
There is a sense in which these priors serve as “defaults”, that is, choices that may be
made automatically without any contemplation of their suitability in a particular problem.
Indeed, it is entirely possible that in future Bayesian software such default selections will be
available. This should not undermine or replace inherently subjective judgment, but rather
acknowledges the convenience that standardization provides.

As we have seen, there are situations in which reference priors have undesirable properties
and consequences. These include incoherence, inadmissibility, marginalization paradoxes,
sample space dependence, impropriety of the posterior, and unsuspected marginal effects
in high-dimensional problems. In practice, the most serious and worrisome of these are

probably the latter two, though the others have collectively sent a strong signal of caution.

5.1 Local uniformity

One response to the worries about reference priors, in applications, has been to use a proper
prior that is quite diffuse. Box and Tiao (1973, p. 23) call such a prior locally uniform,
meaning that its density is slowly varying over the region in which the likelihood function
is concentrated. One might, for instance, truncate an improper reference prior so that its

domain is compact and it becomes proper. An alternative is to use a probability distribution,
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such as a Normal, that has a very large spread.

As a practical device, this approach will work fine in many problems. It does not, however,
have any fundamental ability to avoid the difficulties that arise in using reference priors. To
specify the meaning “quite diffuse” one must, for instance, determine the size of the compact
set defining the domain in the truncation case or pick the spread when using a distribution
such as a Normal. It is certainly possible to make a choice so that the resulting proper
prior 7#*(#) succeeds in approximating the “uniformity” of a reference improper prior = ()
(e.g., when 6 is one-dimensional, taking the Normal standard deviation to be 10'° times the
largest imaginable value of #); but then the posterior based on #*(#) will also approximate
the formal posterior that would be obtained from = (#). While it is true, mathematically, that
the posterior based on 7*(#) will be proper, computationally the two posteriors will behave
in much the same way and, thus, any serious analytical difficulties present with the original
posterior will remain with its modification. As we said, we do believe it is often possible
to choose the spread to be suitably large and still obtain reasonable results. Our point is
that the method is not necessarily easy or automatic: when difficulties with reference priors
arise in a problem, it should serve as a warning about the problem that care will be needed
with proper priors as well. We have found this an important practical matter, and thus do
not accept facile arguments implying that difficulties may be safely ignored by using proper

priors.

5.2 Reference priors with large samples

A more positive side to the point of view articulated by Box and Tiao (1973) appears when
we consider the “data-dominated” cases, in which they assumed a reference prior would be
likely to succeed. These could also be called large-sample cases, since they involve situations
in which the posterior is dominated by a peaked likelihood function. Jeffreys, too, focused
on these cases (e.g., in Jeffreys, 1963, and also in his 1961 book, on page 212, where he finds
approximate posterior for the median of a distribution). Here, the difficulties associated
with reference priors will be greatly diminished and results using any of the various possible

choices for them will not be much different.
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Let us carry this observation a step further by considering the case in which a reference
prior leads to an improper posterior yet it is not hard to find a suitable proper prior that
leads to sensible results. An example occurs in the one-dimensional Normal hierarchical
model, with the prior on the second-stage parameters 7(u, o) = o', This is not the prior
determined by Jeffreys’s general rule but it illustrates the point we wish to make. This prior
leads to an improper posterior (e.g., Berger 1985 p. 187) yet, in practice, with reasonably
large sample sizes and a non-negligible second-stage variance, a data-analyst who uses it
together with asymptotic approximation and, perhaps, other numerical methods, will rarely
run into trouble. The reason is that the likelihood function will tend to have a peak away
from the boundary o = 0, so that if one ignores the region near the boundary the posterior
is integrable and well-behaved. This amounts to substituting for the improper prior a proper
version obtained by truncation to a compact set. In principle the choice of compact set could
be very influential on the results, but often, in practice, the likelihood peak is sufficiently far
from the boundary that there is much leeway in the choice; the impropriety of the posterior
in such cases becomes a mere technicality that may be ignored.

The situation just described is what Box and Tiao called “data-dominated”. The dif-
ficulty with the argument that one may always substitute a suitable proper prior for an
improper one is simply that it may not be obvious whether or not a particular posterior is
data-dominated. To summarize, we see a dichotomy between large-sample and small-sample
problems. Again, by “large-sample” situations we mean those in which the posterior is domi-
nated by a single peak. We would confine the discussion of “default” methods to problems of
the former kind while considering the latter to require much more serious attention, beyond
what reference analysis can yield.

With this large-sample motivation in mind, we note that several of the methods we
discussed specifically rely on asymptotic theory. For example, Jeffreys’s general rule and
its geometrical interpretation, the Berger-Bernardo rule, coverage matching methods, and
methods based on data-translated likelihoods are all built from asymptotic arguments. Im-
portantly, these all lead to Jeffreys’s general rule or some modification of it. Thus, we believe
Jeffreys’s general rule, together with its variants (such as the Berger-Bernardo rule for pa-

rameter subsets), remains an acceptable standard or, to repeat a phrase used previously, it
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is “the default among the defaults.”

5.3 Open problems

If we regard Jeffreys’s general rule as a reasonable standard, two problems present themselves:
(i) computation of it and (ii) verification that it leads to a proper posterior. For some models,
such as the Normal families mentioned in the Introduction, it is not difficult to compute the
prior of Jeffreys’s general rule. But for others, such as in many non-Normal hierarchical
models, it may not be clear how the prior may be efficiently computed.

Although we pointed out, above, that results based on improper posteriors are sometimes
quite sensible they will remain worrisome unless the data analyst has good reason to think
the posterior is data-dominated (and away from troublesome boundaries). Thus, it would
be very helpful to know whether Jeffreys’s general rule, and related methods, lead to proper
posteriors for particular models. Some work along these lines was cited in Section 4.2.5 but
more general results are needed.

Finally, we come to the biggest issue: How is one to know whether a particular posterior
is data-dominated and, thus, whether a reference analysis is acceptable? If this could some-
how be determined by following a reasonably straightforward procedure, Bayesian statistical
practice would advance substantially.

One simple idea is to use two alternative reference methods and check the results for
agreement, but this is at best rather indirect and, furthermore, may be more informative
about the two alternative priors than about the data. A useful partial answer ought to
involve asymptotics, since we would be trying to determine whether the sample size is suffi-
ciently large, and for this, one might check whether the posterior is approximately Normal
as suggested by Kass and Slate (1992, 1994). Once again, however, the latter approach fails
to assess directly how much the posterior would change if an appropriate informative prior
were to replace the reference prior. The negative results of Wasserman (1993) also indicate
the difficulty of this problem. Ultimately, there seems to be no way around the exercise of
some subjective judgment: the only completely reliable way to assess the effect of using an

appropriate informative prior is to do so. Nonetheless, we believe this aspect of judgment
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may be improved by statistical research and experience as are the many other data-analytic
judgments statistical scientists must make.

We hope that our classification, summary, and discussion will help others understand
better this diverse literature, and that the outstanding problems we have noted will receive

further examination.
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ANNOTATED BIBLIOGRAPHY
Akaike, H. (1978). A new look at the Bayes procedure. Biometrika 65, 53-59.

Defines a prior to be impartial if it is uniform in a homogeneous parameterization.
In general, a globally homogeneous parameterization cannot be found. A locally
homogeneous parameterization can be found and this leads to (1). This is close
to Jeffreys’s original argument.

Akaike, Hirotugu (1980). The interpretation of improper prior distributions as limits of data
dependent proper prior distributions. J.R. Statist. Soc. B 42, 46-52.

Suggests that improper priors be regarded as limits of data dependent proper
priors. The author considers an example of a strong inconsistency (section 4.2.1)
and an example of a marginalization paradox (section 4.2.4) and, in each case,
argues that the paradoxes are best resolved by using a sequence of proper priors
that depends on the data.

Bartholomew, D.J. (1965). A comparison of some Bayesian and frequentist inferences. Biometrika,

52, 19-35.

Investigates the discrepancy between Bayesian posterior probability and frequen-
tist coverage. It is noted that, among other things, better agreement can some-
times be reached in sequential experiments.

Bayes, T.R. (1763). An essay towards solving a problem in the doctrine of chances. Phil. Trans.
Roy. Soc. 53, 370-418. Reprinted in Biometrika 45 (1958), 243-315.

The paper where a uniform prior for the binomial problem was first used. There
has been some debate over exactly what Bayes had in mind when he used a flat
prior; see Stigler (1982). Other interesting information about Bayes is contained

in Stigler (1986).

Berger, J.O. (1992). Objective Bayesian Analysis: Development of Reference Noninformative
Priors. Unpublished lecture notes.

A lucid and informative review of reference priors with emphasis on the methods
developed by Berger and Bernardo.

Berger, J. and Bernardo, J. (1989). Estimating a product of means: Bayesian analysis with
reference priors. J. Amer. Statist. Assoc. 84 200-207.

The method of reference priors is applied to the problem of estimating the prod-
uct of means of two normal distributions. This is one of the first examples to
show that Bernardo’s (1979a) method cannot be applied as originally presented
because of technical problems relating to the nonintegrability of the reference
prior conditional on the parameter of interest. It also shows that the method
depends on how improper priors are approximated by proper priors.
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Berger, J. and Bernardo, J. (1991). Reference priors in a variance components problem. In
Bayesian Inference in Statistics and Econometrics. (P. Goel and N.S. Iyengar, eds.) Springer-
Verlag, NY.

The Berger-Bernardo method is applied to balanced variance components prob-
lems. Various priors are derived depending on how the parameters are grouped.

Berger, J. and Bernardo, J. (1992a). Ordered group reference priors with application to the
multinomial problem. Biometrika, 25, 25-37.

The Berger-Bernardo stepwise method can produce different priors, depending
on how the parameters are grouped. This issue is discussed and illustrated with
the multinomial problem.

Berger, J. and Bernardo, J. (1992b). On the development of the reference prior method. In
Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting. (J.M.
Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith eds.) 35-60. Clarendon Press: Oxford.

Synthesizes much recent work by these two authors on the stepwise approach
to constructing priors. Attention is given to several practical matters including
the choice of partitioning the parameter and the use of sequences of compact
sets that are used to deal with impropriety. Also, there is some discussion of
non-regular cases.

Berger, J.O., Bernardo, J.M. and Mendoza, M. (1989). On priors that maximize expected infor-
mation. In Recent Developments in Statistics and Their Applications. J. Klein and J. Lee,
editors. Freedom Academy: Seoul.

Some technical matters related to the Berger-Bernardo approach are dealt with.
These include the existence of maximizing measures, discreteness of solutions for
finite experiments, and questions about limits, both in terms of sample size and
in terms of sequences of compact subsets of the parameter space.

Berger, James O. and Ruo-yong Yang. (1992). Noninformative priors and Bayesian testing for
the AR(1) model. Technical report 92-45C, Department of Statistics, Purdue University.

Considers several possible reference priors for the AR(1) process: X; = pX;_1+¢
where ¢ ~ N(0,1). The priors considered are the flat prior, Jeffreys’s prior
and two version of the Berger-Bernardo prior. An alternative prior, called the
symmetrized reference prior is also considered. This is defined by

(7) :{ {2ryT=p7}70 i [p| <1
{27|plvT—p?}7" if [p| > 1.

The priors are compared in simulation studies for the coverage properties and
mean-squared errors of the Bayes estimators. The symmetrized reference prior
performed better in mean-squared error and reasonably well in terms of coverage
and the authors recommend this prior as the reference prior. The authors also
consider the problem of testing for a unit root.
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Berger, James O. and Ruo-yong Yang. (1993). Estimation of a covariance matrix using the
reference prior. Technical report 93-13C, Department of Statistics, Purdue University.

The problem is to estimate the covariance matrix ¥ in a N(0,%) model. The
authors argue that Jeffreys’s prior does not “appropriately shrink the eigenval-
ues.” They decompose ¥ as ¥ = O'DO where O is an orthogonal matrix and D
is diagonal with decreasing elements. Then the method of Berger and Bernardo
(1992b) is applied treating the parameters as being ordered in importance, with
the elements of D being the most important. The authors discuss methods for
computing the posterior and they evaluate the accuracy of the Bayes estimator
by simulation.

Bernardo, J.M. (1979a). Reference posterior distributions for Bayesian inference (with discussion).
J. Roy. Statist. Soc. 41, 113-147.

Two ideas emerge in this paper. The first is to define reference priors as priors
that maximize the asymptotic missing information relative to a given experiment.
In continuous parameter spaces this is typically the prior given by (1). In finite
spaces it is the uniform prior. The second idea is to decompose parameters into
a parameter of interest and a nuisance parameter. Then a stepwise argument is
applied, by finding the reference prior for the nuisance parameter conditional on
the parameter of interest, finding the marginal model for the parameter of interest
and then finding the marginal reference prior for the parameter of interest. Many
anomalies of noninformative priors are apparently solved this way. See section

3.5.
Bernardo, J.M. (1979b). Expected information as expected utility. Ann. Statist. 7 686-690.

This paper views the task of reporting a posterior distribution as a decision
problem. Suppose that u(p*,8) is the utility of reporting a distribution p* when
f is the true value of the parameter. If = is observed, the expected utility is
Ju(p*,0)p(0|x)dh. If this is maximized by reporting one’s true posterior, then
u is said to be proper. The function u is local if u(p*, ) = u(p*(),0) for all
f. This means that the utility only depends on the value of the density at
the true value. Bernardo shows that if u is smooth, proper and local, then
u(p*,0) = Alog p* + B(0) for some constant A and some function B.

Bernardo, J.M. (1980). A Bayesian analysis of classical hypothesis testing. Bayesian Statistics:
Proceedings of the First International Meeting Held in Valencia (Spain). J.M. Bernardo,
M.H. DeGroot, D.V. Lindley and A.F.M. Smith eds., 605-647.

Applies the method in Bernardo (1979a) to the problem of hypothesis testing.
First, the Berger-Bernardo prior for the prior probability of the null is obtained
for a fixed prior on the parameter, conditional on the alternative. Then, he
suggests using Jeffreys’s rule (possibly on a truncated space) for the parameter
under the alternative. In the case where the data are Normal with known variance
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o?, and we are testing y = g, the posterior odds using this method turn out to

be
7(Hy|Data)

7(Ho|Data)
where v, = /n(T — po) /0.

= exp{(1/2)(+2 — 1)}

Berti, Patrizia, Regazzini, Eugenio and Rigo, Pietro (1991). Coherent statistical inference and
Bayes theorem. Ann. Statist., 19, 366-381.

When dealing with finitely additive probabilities, the formal application Bayes
theorem need not generate a coherent posterior. Similarly, a coherent posterior
need not be generated by Bayes theorem. This paper investigates conditions for
which posteriors from Bayes theorem are coherent.

Box, G.E.P. and Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley,
Reading, Massachusetts.

They argue that it is not possible to model complete ignorance, but that it is
possible to model ignorance relative to a given experiment (page 25). They
suggest using a flat prior in a parameterization that makes the likelihood depend
on the data only through its location. Jeffreys’s prior accomplishes this, at least
approximately. Kass (1990) shows that these ideas can be made more precise
and can be extended. See section 3.3.

Brunk, H.D. (1991). Fully coherent inference. Ann. Statist. 19, 830-849.

Investigates coherence in the spirit of Dawid and Stone (1973, 1973), Heath and
Sudderth (1978) and Lane and Sudderth (1983). Notes that coherent inferences
may have some unpleasant properties; for example, the posterior might put mass
in places where the prior does not. The author introduces a notion of compati-
bility between the prior and the posterior to rule out such behavior.

Chang, T. and Eaves, D. (1990). Reference priors for the orbit in a group model. Ann. Statist.
18 1595-1614.

Suppose that the parameter w = (6, g), where ¢ € G, G is a group, and 6, the
parameter of interest, indexes the orbits of the group. The authors propose the
prior p(0)p(g|0) where p(g|f) is right Haar measure,

p(0) = lim +/det(1,(6))/n

and I,(0) is the information matrix for y,,, the maximal invariant of the G-action.
They show that this is a reference prior in the sense of Bernardo (1979). Further,
they show that the decomposition w = (6, g) need not be found explicitly to find
the prior. Examples based on the multivariate Normal are given. See section 3.2.
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Chang, T. and Villegas, C. (1986). On a theorem of Stein relating Bayesian and classical inferences
in group models. Canad. J. Statist. 14 289-296.

Gives a new proof of Stein’s (1965) theorem that equivariant posterior regions
correspond to confidence intervals in group models when right Haar measure is
used as a prior. The proof avoids the need for an equivariant factorization of the
sample space. Some applications to the multivariate normal are considered.

Chernoff, H. (1954). Rational selection of decision functions. Fconometrica, 22 422-443.

Derives the Principle of Insufficient Reason for finite spaces based on eight postu-
lates of rational decision making. He avoids partitioning paradoxes by restricting
the theory to sets with a given number of outcomes.

Cifarelli, D.M. and Regazzini, E. (1987). Priors for exponential families which maximize the asso-
ciation between past and future observations. Probability and Bayesian Statistics. (Viertl,

R. ed.) Plenum Press: New York. 83-95.

Using finitely additive priors for an exponential model, the authors show that a
large class of priors give perfect association between future and past observations
in the sense that there are functions ¢, : IR* — IR such that

P(Xy <a,¢0,(X1,....X,) <a)=P(Xy <2)=P(o(X1,.... X)) < )

forall N >n,n=1,2,... and z € IR. Under certain conditions, they show that
the only prior that gives K(Xn|X1,...,X,) = X, is the usual improper uniform
prior.

Cifarelli, Donato Michele and Regazzini, Eugenio (1983). Qualche osservazione sull’uso di dis-
tribuzioni iniziali coniugate alla famiglia esponenziale. Statistica 43:415.

Shows that the conjugate priors for the exponential family are the unique priors
that maximize the correlation between Xy and X, subject to fixed values of

Var(E(X,|0))/Var(X,).

Clarke, B. and Barron, A. (1990a). Bayes and minimax asymptotics of entropy risk. Technical
report, Purdue.

Shows that Jeffreys’s prior is the unique, continuous prior that achieves the
asymptotic minimax risk when the loss function is the Kullback-Leibler distance
between the true density and the predictive density. See also Good (1969) and
Kashyap (1971).

Clarke, B. and Wasserman, L. (1993). Noninformative priors and nuisance parameters. J. Amer.
Statist. Soc., to appear.
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A functional that measures missing information for a parameter of interest minus
a penalty term that measures the implied information for other parameters is
defined. The prior that maximizes the functional is called a trade-off prior.

Clarke, B. and Wasserman, L. (1992). Information tradeoff. Technical report 558, Department of
Statistics, Carnegie Mellon University.

Further investigates the trade-off priors in Clarke and Wasserman (1993). A
closed-form expression for the trade-off prior is obtained and the relationship
with the Berger-Bernardo prior is derived.

Clarke, B. and Dong Chu Sun. (1992). References priors under the Chi-squared distance. Tech-
nical report, Department of Statistics, Purdue University.

Noting that Jeffreys’s prior can be obtained by maximizing expected Kullback-
Leibler distance between prior and posterior, the authors consider instead max-
imizing expected Chi-squared distance. Within a certain class of priors, the
maximizing prior turns out to be proportional to the inverse of Jeffreys’s prior
squared.

Consonni, G. and Veronese, P. (1987). Coherent distributions and Lindley’s paradox. In Proba-
bility and Bayesian Statistics. (R. Viertl, ed.) 111-120. Plenum, New York.

The Jeftreys’s-Lindley paradox is that there may be sharp disagreement between
the classical and Bayesian tests of a sharp null hypothesis. In its extreme form,
where an improper prior is used, this leads to a situation where the Bayes factor
for the simpler model is infinite. The authors discuss the latter version in the
context of finitely additive probability theory. In particular, by assigning mass
adherent to the null (loosely, probability arbitrarily close to but not at the null)
then the paradox is avoided.

Consonni, G. and Veronese, Piero. (1988). A note on coherent invariant distributions as non-
informative priors for exponential and location-scale families. Studi Statistici n. 19, Univer-
sita L. Bocconi, Milano.

Dawid’s notion of context invariance (Dawid 1983) is used to derive non-informative
priors for exponential and location-scale families. Improper priors are interpreted
as finitely additive priors and are obtained by taking limits of priors on expanding
sequences of compact sets. The conclusion is that these methods lead to only a
class of priors. The prior from Jeffreys’s general rule is not generally in this class
but Hartigan’s ALI prior (Hartigan 1964) appears to be in the class.

Mukhopadhyay, Saurabh and DasGupta, Anirban (1993). Uniform approximation of Bayes solu-
tions and posteriors: frequentistly valid Bayes inference. Technical report 93-12C, Depart-
ment of Statistics, Purdue University.
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Suppose that f(z — 8) is a location family such that the moment generating
function for f(x) exists. Let 7% be the posterior using a flat prior. The authors
show (among other things) that, for every € > 0, there exists a proper, countably
additive prior ¢ with posterior ¢* such that d(#*,¢") < € for all .

Dawid, A. P. (1983). Invariant prior distributions. Encyclopedia of Statistical Sciences. (Kotz, S.
and Johnson, N. L. eds.), vol. 4, 228-236.

Excellent review of invariant priors. Explains the principles of parameter invari-
ance, data invariance and context invariance.

Dawid, A.P. and Stone, M. (1972). Expectation consistency of inverse probability distributions.
Biometrika, 59, 486-489.

Investigates “expectation consistency” which means, loosely, that functions with
zero posterior mean for every data point should not have positive expected value
with respect to every parameter value. Inferences from Bayesian posteriors are
shown to be expectation consistent. If the model gives positive probability to all
data points, then an expectation-consistent inference is a posterior with respect
to some prior.

Dawid, A.P. and Stone, M. (1973). Expectation consistency and generalized Bayes inference. Ann.
Statist. 1, 478-485.

Extends work in Dawid and Stone (1972). The assumption that the model gives
positive probability to all data points is dropped. Priors that produce a given
expectation consistent posterior are characterized.

Dawid, A.P., Stone, M. and Zidek, J.V. (1973). Marginalization paradoxes in Bayesian and
structural inference (with discussion). J. Roy. Statist. Soc. B 35, 189-233.

This paper discusses a paradox that can arise when using improper priors. Es-
sentially, the problem is that the marginal of the posterior may depend on only
a function of the data. Then, it is found that the distribution of this function
cannot be combined with any prior to reproduce the marginal posterior. The
paper is now a classic in this area. It is filled with examples, has a detailed anal-
ysis of the group theoretic case and also considers Fraser’s theory of structural
inference. There is a long and interesting discussion. See section 4.2.4.

Dey, Dipak K., Gelfand, Alan E. and Peng, Fengchun. (1993). Overdispersed generalized linear

models. Technical report, Department of Statistics, University of Connecticut.

Gives conditions for the propriety of the posterior in some overdispersed gener-
alized linear models. See also Ibrahim and Laud (1991).

DiCiccio, Thomas J. and Martin, Michael, M. (1993). Simple modifications for signed roots of
likelihood ratio statistics. J. Roy. Statist. Soc. B. 55, 305-316.
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Shows that the approximate 1 — « confidence limit obtained by using the ap-
proach of Welch and Peers (1963) and Peers (1965) differs by order O(n=%/?)
from a conditional confidence limit using the signed square root likelihood ratio

statistics.

DiCiccio, Thomas J. and Stern, Steven E. (1992). Frequentist and Bayesian Bartlett correction
of test statistics based on adjusted profile likelihood. Technical report 404, Department of
Statistics, Stanford University.

Characterizes priors for which highest posterior density regions and likelihood
regions with content 1 — a have coverage 1 — o+ O(n~?). This generalizes results

in Ghosh and Mukerjee (1992b) and Severini (1991).

FEaton, M. (1992). A Statistical Diptych: Admissible inferences — Recurrence of symmetric Markov
chains. Ann. Statist. 20, 1147-1179.

Finds a sufficient condition so that the formal Bayes rules for all quadratically
regular decision problems are admissible. The condition is related to the recur-
rence of a Markov chain on the parameter space generated by the model and the
prior.

Eaton, Morris L. and William D. Sudderth (1993a). The formal posterior of a standard flat prior
in MANOVA is incoherent. Unpublished manuscript, Department of Statistics, University
of Minnesota.

The authors show that the right Haar prior in a MANOVA model produces an
incoherent posterior in the sense that it is possible to devise a finite system of bets
that is guaranteed to have expected payoff greater than a positive constant. Co-

herence is discussed in Heath and Sudderth (1978, 1989) and Lane and Sudderth
(1983).

Eaton, Morris L. and William D. Sudderth (1993b). Prediction in a multivariate normal setting:
coherence and incoherence. Unpublished manuscript, Department of Statistics, University

of Minnesota.

Shows that a common, invariant prior for the multivariate normal leads to inco-

herent predictions.

FEaves, D.M. (1983a). On Bayesian non-linear regression with an enzyme example. Biometrika

70, 373-379.

Notes the form of Jeffreys’s rule in this setting and points out that it can be
derived by the method of Bernardo (1979). This prior was also mentioned by
Beale (1960).

FEaves, D.M. (1983b). Minimally informative prior analysis of a non-linear model. The Statist.,
32: 117.
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This one-page article describes work applying the scheme of Bernardo (1979a) to
partially nonlinear models. See Eaves (1983a).

Eaves, D.M. (1985). On maximizing missing information about a hypothesis. .J. Roy. Stat. Soc.
Ser. B, 47, 263-266.

Suppose that X is N(u,0?), 0% known, and consider the hypothesis Hy : 1 = po.
Let the prior for p conditional on HS be N(uo,7*) and let the prior for odds
for Hy be w. This paper shows that, for fixed 72, the expected information for
Hy is maximized by some w > 1. Over all 72 the maximum occurs at w = 1
and 72 = oo leading to the Jeffreys-Lindley paradox (Hj is accepted always).
Maximizing the expected information for Hy plus the information for u leads to
w =0 and 7% = co. Other approaches to choosing priors for testing are given by

Bernardo (1980) and Pericchi (1984).
Efron, B. (1973). Discussion of Dawid, Stone and Zidek (1973). J. R. Statist. Soc. B 35, 219.

Discusses “noninformative” priors in multiparameter situations. In particular,
let 61 ...,6100 be parameters and xq,,... 2100 data, where x; ~ N(6;,1) inde-
pendently given the {6;}. Considers the “noninformative” prior 8, ~ N(0, A), A
large and shows that, if the parameter of interest is ¢ = "1°°#?, this prior can
overwhelm the data. This can be overcome by assuming A itself has a diffuse
prior, say proportional to (A 4+ 1)7%. But then if the parameter of interest is

¢ = max¥,, this appears informative.
Efron, B. (1986). Why isn’t everyone a Bayesian? (with discussion). Am. Statist. 40, 1-11.

Suggests several reasons why the Bayesian paradigm has not been widely accepted
among practicing statisticians, including the difficulty in defining “objective”
Bayesian inference. Some of the discussion takes up this point as well.

Gatsonis, C.A. (1984). Deriving posterior distributions for a location parameter: a decision-
theoretic approach. Ann. Statist. 12, 958-970.

Shows that the best invariant estimator of the posterior distribution for a location
parameter using Lo distance as a loss function is the posterior arising from a
uniform prior. Also, shows that this estimator is inadmissible for dimension
greater than 3 and suggests alternative estimators.

Geisser, S. (1984). On prior distributions for binary trials. Am. Statist. 38, 244-251.

In estimating the success probability # from a Binomial or negative Binomial
sample, it is argued that the interval (0, 1) of possible values of 8 is a convenient
representation of the finitely many values of # that are actually possible [e.g.,
according to machine precision in a computer]. When there are finitely many
values, a uniform prior is generally taken to be appropriate (according to the
Principle of Insufficient Reason, see Section 3.1). Thus, a uniform prior on ¢
should be used for Binomial or negative Binomial sampling. Predictive distribu-
tion calculations are given as a way of formalizing this argument. See also Stigler

(1982).
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Geisser, S. and Cornfield, J. (1963). Posterior distributions for the multivariate normal distribu-
tion. J. R. Statist. Soc. B, 25 368-376.

Contrasts posterior distributions with Fiducial and confidence. The motivation is
the discrepancy between joint confidence regions for a multivariate normal based
on Hotelling’s T? and regions based on a fiducial distribution. A class of priors
indexed by a parameter v is proposed. The fiducial answer corresponds to v = 2
and Hotelling’s answer corresponds to v = p + 1 where p is the dimension of the
problem. Further, there is no value of v that gives the usual Student intervals
for a single mean and Hotelling’s regions for the joint problem. See Stone (1964)
for a criticism of this prior, namely, the prior is not a probability limit of proper
priors.

George, E.I. and McCulloch, R. (1989). On obtaining invariant prior distributions. Technical
Report # 73. Graduate School of Business, University of Chicago.

Motivated by Jeffreys, the authors define a prior in terms of a discrepancy mea-
sure ¥(+,-) on a family of distributions. The prior is defined by

7(0) o det(s7 57 (0, 0))"/>.

Variance discrepancies are considered. The priors are parameterization invariant.
Requiring sample space invariance as well leads to (1). Left invariant discrepan-
cies produce left invariant Haar measure. Similar invariance arguments are also

considered in Hartigan (1964), Kass (1989), and Good (1969).

Ghosh J.K. and Mukerjee, R. (1992a). Non-informative priors. In Bayesian Statistics 4, (J.M.
Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith ed.). 195-210. Clarendon Press,
Oxford.

Examines the Berger-Bernardo prior and suggests using the marginal missing
missing information; see also Clarke and Wasserman (1992, 1993) for this ap-
proach. Then, priors that match posterior probability and frequentist coverage
are considered. For this, Bartlett corrections to the posterior distribution of the
likelihood ratio are used. Finally, some results on finding least favorable priors
are given.

Ghosh, J.K. and Mukerjee, Rahul. (1992b). Bayesian and frequentist Bartlett corrections for
likelihood ratio and conditional likelihood ratio tests. J. Roy. Statist. Soc. B 54, 867-875.

Characterizes priors for which Bayesian and frequentist Bartlett corrections for
the likelihood ratio statistic differ by o(1). Posterior regions based on the Bartlett
corrected likelihood ratio statistic have the same frequentist nominal coverage to
order o(n™!). See section 3.7.

Ghosh, J.K. and Mukerjee, Rahul. (1993). On priors that match posterior and frequentist distri-
bution functions. Canad. J. Stat. 21, 89-96.
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Characterizes priors, by way of a differential equation, that make P(W < t|X) =
P(W < 1]0) + o(n='/?) for all # and all ¢, in multiparameter models. Here,
W = n'2C%(0 — é) where the matrix C* is chosen in a certain way so that
W reflects an ordering of the parameters in terms of importance. Thus, W,

is a scaledA version of nl/z(ﬂl - él), W5 is a standardized regression residual of
n1/2(02 —03) on n1/2(01 — 61) and so on.

Good, I.J. (1969). What is the use of a distribution? Multivariate Analysis (Krishnaiah, ed.), IT,
183-203. New York: Academic Press.

This paper defines U(G|F) to be “the utility of asserting that a distribution is
(G when, in fact, it is F7. Various functional form for U are studied. For a
particular form of U, a minimax argument establishes (1) as the least favourable
distribution.

Haldane, J.B.S. (1948). The precision of observed values of small frequencies. Biometrika 35,
297-303.

Suggests the prior p~'(1 — p)~! for a binomial parameter p when the event is
expected to be rare.

Hartigan, J.A. (1964). Invariant prior distributions. Ann. Math. Statist. 35, 836-845.

Defines a prior h to be relatively invariant if h(z6)(dz0/df) = ch(8) for some c,
whenever z is a 1-1 differentiable transformation satisfying f(zx|20)(dzx/dx) =
f(xz]0) for all  and 6. An asymptotic version leads to an asymptotically locally
invariant (ALI) prior defined, in the one dimensional case, by

0

(%) log h(6) = —E(fuf2)/ E(f2)

where f; = [0/00log f(x]0)]o and fy = [0?/36? log f(x]0)]o. Some unusual priors

are obtained this way. For example, in the normal (p, 0*) model we get 7(u, o) =

o7,

Hartigan, J.A. (1965). The asymptotically unbiased prior distribution. Ann. Math. Statist. 36,
1137-1152.

The author approaches non-informative priors with a decision theoretic motiva-
tion. A decision d(x) is unbiased for loss function L if

Egy (L(d(),0)[00) = Eg,(L(d(x),00)]00)

for all 8, 0y. If the parameter space is one dimensional, then the Bayes’ estimator
is asymptotically unbiased if and only if the prior density & satisfies

h(0) = E(9/001og f(2]0))"/(0°/06°L(0,6))}L%.
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Jeffreys’s rule can be obtained by using Hellinger distance as a loss function. Ex-
tensions to higher dimensions lead to possibly intractable differential equations.
The prior 7(u, o) = 1/o for location-scale problems is apparently not obtainable
from this approach.

Hartigan, J.A. (1966). Note on the confidence-prior of Welch and Peers. J. Roy. Statist. Soc. B
28, 55-56.

In this note, the author shows that a two-sided Bayesian 1 — « credible region
has confidence size 1 — « + O(n™!') for every prior. This is in contrast to the
result of Welch and Peers (1963) where, for one-sided intervals, the prior from
Jeffreys’s rule was shown to have confidence 1 — a + O(n™!) compared to other
priors that have confidence 1 — a + O(ﬁ)

Hartigan, J.A. (1971). Similarity and probability. Foundations of Statistical Inference, V.P.
Godambe and D.A. Sprott, (Eds.), Holt, Rinehart and Winston, Toronto.

Defines the similarity of events £ and F by S(F,F)= P(EN F)/(P(E)P(F)).
Shows that (1) makes present and future observations have constant similarity,
asymptotically. Also, (1) maximizes (asymptotically) the similarity between the
observations and the parameter.

Heath, David and Sudderth, William (1978). On finitely additive priors, coherence, and extended
admissibility. Ann. Statist. 6, 333-345.

Shows that inferences for a parameter given an observation are coherent (in
a certain sense) if and only if the inferences are the posterior for some prior.
The development takes place using finitely additive probabilities. The coherence
condition essentially boils down to conglomerability in the parameter margin and
the data margin.

Heath, D. and Sudderth, W. (1989). Coherent inference from improper priors and from finitely
additive priors. Ann. Statist. 17, 907-919.

Conditions are given so that the formal posterior obtained from an improper
prior are coherent in the sense of Heath and Sudderth (1978).

Hills, S. (1987). Reference priors and identifiability problems in non-linear models. The Statisti-
cian. 36, 235-240.

Argues that the contours of the Jeffreys’s prior give clues about regions of the
parameter space that are nearly non-identifiable.

Ibrahim, Joseph G. and Laud, Purushottan W. (1991). On Bayesian Analysis of Generalized
Linear Models Using Jeffreys’s Prior. J. Amer. Statist. Assoc. 86, 981-986.
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Sufficient conditions are given for the propriety of the posterior and the existence
of moments for generalized linear models. In particular, they show that Jeffreys’s
prior leads to proper posteriors for many models.

Jaynes, E.T. (1968). Prior probabilities. IEEE Transactions on Systems Science and Cybernetics,
SSC-4, 227-241.

Takes the position that objective priors exist, and can often be found from the
method of maximum entropy. A connection is made between maximum entropy
and frequency distributions. When a parameter is continuous, a base measure is
needed. The author recommends using group invariant measures for this purpose
when they are available. A critique of this approach is given in Seidenfeld (1987).

Jaynes, E.T. (1980). Marginalization and prior probabilities. Bayesian Analysis in Econometrics
and Statistics, A. Zellner (Ed.), North Holland, Amsterdam.

A rebuttal to the Dawid, Stone and Zidek (1973) paper. He claims that the
marginalization paradoxes are illusory and occur only because relevant informa-
tion is ignored in the analysis. Specifically, the two conflicting posteriors in the
marginalization paradox are based on different background information /; and
15, say. Jaynes’ thesis is that if we are more careful about notation and write
p(Alx, I;) instead of p(Alx) the the paradox disappears. Further, he proposes
that priors that are immune to the illusion of marginalization paradoxes are
interesting in their own right. A rejoinder by Dawid, Stone and Zidek follows.

Jaynes, E.T. (1982). On the rationale of maximum entropy methods. Proc. of IEEFE, 70, 939-952.

A discussion of maximum entropy methods for spectral analysis. Much attention
is given to the observation that “most” sample paths give relative frequencies
concentrated near the maximum entropy estimate.

Jaynes, E.T. (1983). Papers on Probability, Statistics and Statistical Physics. (R. Rosenkrantz
ed.) Dordrecht: D. Reidel.

A collection of some of Jaynes most influential papers. Includes commentary by
Jaynes.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proc. R.
Soc. London A 186, 453-461.

Proposes his prior. The material in this paper is essentially contained in Jeffreys

(1961).

Jeffreys, H. (1961). Theory of Probability, (3rd Edition). (1st ed. 1939, 2nd ed. 1947). Oxford

University Press, London.
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This extremely influential text lays the foundation for much of Bayesian theory
as 1t 1s practiced today. Jeffreys’s rule is defined and hypothesis testing is studied
in great detail. See section 2.

Kadane, Joseph B., Mark J. Schervish and Teddy Seidenfeld (1986). Statistical implications of
finitely additive probability. In Bayesian Inference and Decision Techniques. (P. Goel and
A. Zellner eds.), p 59-76, Elsevier Science Publishers.

Discusses various paradoxes that occur with finitely additive probabilities. The
authors argue that these paradoxes do not undermine the utility of finitely ad-
ditive probabilities. Furthermore, they critically examine the Heath, Lane, Sud-
derth approach to coherence (section 4.2.1) and suggest that their notion of
coherence is too strong. They discuss several famous statistical paradoxes in the
framework in a finitely additive framework.

Kashyap, R.L. (1971). Prior probability and uncertainty. [EEFE Trans. Information Theory
1T-14, 641-650.

Views the selection of a prior as a 2-person zero sum game against nature. The
minimax solution, using the average divergence between the data density and the
predictive density as a loss function, is that prior 7(#) that minimizes F log p(y |
8)/7(0) where expectation is with respect to the joint measure on y and 6 (this is
the Berger/ Bernardo solution). Asymptotically, he derives (1). He also considers
the ergodic, but non-independent case.

Kass, R.E. (1989). The geometry of asymptotic inference. Statistical Science. 4 188-234.

Discusses a geometric interpretation of Jeffreys’s prior, based on its derivation as
the volume element of the Riemannian metric determined by Fisher information.
See section 3.6.

Kass, R.E. (1990). Data-translated likelihood and Jeffreys’s rule. Biometrika. 77, 107-114.

Provides an explanation and elaboration of Box and Tiao’s concept of data-
translated likelihood. Also shows that it may be extended by conditioning on an
ancillary statistic, and then interprets the concept as essentially group-theoretic.
Box and Tiao’s concept of approximately data-translated likelihood is similarly

discussed. (See Box and Tiao, 1973, and Section 3.3.)

Laplace, P.S. (1820). Essai philosophique sur les probabilit’es, English translation: Philosophical
Essays on Probabilities, 1951. New York: Dover.

For extensive discussion of this and other early works involving “inverse proba-
bility” (i.e., Bayesian inference) see Stigler (1986, Chapter 3).

Lane, David A. and Sudderth, William D. (1983). Coherent and Continuous Inference. Ann.
Statist. 11, 114-120.
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Establishes that if either the sample space or parameter space is compact, then,
assuming some weak regularity conditions, an inference is coherent if and only if
the posterior arises from a proper, countably additive priors.

Lindley, D.V. (1958). Fiducial distributions and Bayes’ theorem. J. Roy. Statist. Soc. B., 20,
102-107.

Shows that, for a scalar parameter and a model that admits a real-valued suffi-
cient statistic, the fiducial based confidence intervals agree with some posterior
if and only if the problem is a location family (or can be transformed into such
a form).

Mitchell, Ann F.S. (1967). Comment on: “A Bayesian Significance Test for Multinomial Distri-
butions,” by I.J. Good. J. Roy. Statist. Assoc. 29, 423.

Points out that for the exponential regression model Ky, = a + p” the uniform
prior on «, 3, log o and p yields an improper posterior. Says that the non-location
Jeffreys prior is unsatisfactory “on common-sense grounds,” and proposes an
alternative class of priors. See also Ye and Berger (1991).

Moulton, Brent R. (1993). Bayesian analysis of some generalized error distributions for the linear
model. Unpublished manuscript, Division of Price and Index Number Research, Bureau of
Labor Statistics.

Obtains Zellner’s MDIP prior for the ¢ family and the power exponential family.

Mukerjee, R. and Dey, D.K. (1992). Frequentist validity of posterior quantiles in the presence of
a nuisance parameter: higher order asymptotics. Technical report 92-07, Dept. of Statistics,
The University of Connecticut.

Finds priors to match frequentist coverage to order o(n™'). It is assumed that
§ = (w,A) where the parameter of interest w and the nuisance parameter A are
one-dimensional.

Nicolaou, Anna. (1993). Bayesian intervals with good frequentist behaviour in the presence of
nuisance parameters. J. Roy. Statist. Soc. B. 55, 377-390.

Finds priors that produce Bayesian intervals that also have accurate frequentist
coverage to order O(n™'). The emphasis is on extending the work of Welch and
Peers (1963) to the case where there are nuisance parameters. See section 3.7.

Novick, M.R. and Hall, W.J. (1965). A Bayesian indifference procedure. .J. Amer. Statist. Assoc.
60, 1104-1117.

Defines an indifference prior by first identifying a class a conjugate priors, and
then requiring (i) that the prior be improper and (ii) that a minimum necessary
sample induces a proper posterior. The identification of a minimum necessary
sample and an initial parameterization in which to define the conjugate class,
varies from problem to problem.
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Novick, M.R. (1969). Multiparameter Bayesian indifference procedures. J. R. Statist. Soc. B 31,
29-64 (with discussion).

Extends the procedure in Novick and Hall (1963) to multiparameter settings.
Requires a consistency condition between conditionals of posteriors based on the
multiparameter approach and the posterior from the single parameter approach.
The prior for a bivariate normal depends on whether we cast the problem as a
correlation problem or a regression problem.

Peers, H.W. (1965). On confidence points and Bayesian probability points in the case of several
parameters. J. Roy. Statist. Soc. B. 27, 9-16.

Considers the problem of finding a prior that will give one sided a-level posterior
intervals that have frequentist coverage v+ O(1/4/n) in multiparameter models.

This extends work of Welch and Peers (1963).

Peers, H.W. (1968). Confidence properties of Bayesian interval estimates. .J. Roy. Statist. Soc.
B., 30, 535-544.

Finds priors to make various two-sided intervals — equal-tailed regions, likelihood
regions and HPD regions — have posterior probability content and frequentist
coverage match to order 1/n.

Pericchi, L.R. (1981). A Bayesian approach to transformations to normality. Biometrika 68,
35-43.

Considers the problem of choosing priors for a Normal problem when Box-Cox
transformations are used. The goal is to avoid the data-dependent prior that was
used by Box and Cox (1964). The resulting priors lead to inferences that mimic
the maximum likelihood analysis.

Pericchi, L. (1984). An alternative to the standard Bayesian procedure for discrimination between
normal linear models. Biometrika, 71, 575-586.

In choosing between models M, ..., My, the author argues that the posterior
tends to favor models for which the expected gain in information is low. This
is an explanation for the Jeffreys-Lindley paradox. To avoid this, he suggests
weighting the prior probabilities of the models appropriately.

Perks, W. (1947). Some observations on inverse probability; including a new indifference rule. .J.

Inst. Actuaries 73, 285-334.

Suggests taking the prior to be inversely proportional to the asymptotic standard
error of the estimator being used. When the estimator is sufficient, this amounts
to Jeffreys’s rule; Perks was not aware of Jeffreys’s 1946 paper. Perks shows
this rule to be invariant to differentiable transformations and treats the Binomial
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case. In his motivational remarks Perks seems to be groping for the concept of
an asymptotic pivotal quantity. There is extensive philosophical discussion in
the paper, and in contributions from discussants. Perks notes that when there is
no sufficient estimator his rule is not explicit, and that Jeffreys’s paper, then in
press, solved this problem.

Perlman, M.D. and Rasmussen, U.A. (1975). Some remarks on estimating a noncentrality param-
eter. Commun. Statist., 4: 455-468.

Let Y ~ Ni(p,I), a k-dimensional spherical normal vector, and let X =[] YV ||?
and § =|| u ||*>. Three estimators of § are compared: the UMVUE, which is
X — k., the posterior mean of é under the flat prior on p, which is X + %k, and
the posterior mean of ¢ under the conjugate normal prior g ~ N(0,~ - I) for
~ > 0. Citing Savage as the source of their argument, the authors show that
under the marginal distribution of X based on the conjugate prior, the latter
posterior mean is likely to be much closer to X — &k than X + &, no matter how
large v is (with probability arbitrarily close to 1 as k — o0). See section 4.2.2.

Phillips, P.C.B. (1991). To criticize the critics: an objective Bayesian analysis of stochastic trends.
J. Applied FEconometrics, 6, 333-364.

Argues vigorously for (1) for some time series models. The problem with Jef-
freys’s prior for time series models is, among other things, that it depends on
sample size making it unclear how to update the posterior when there is a new
observation. Also, Jeffreys’s prior can be obtained from minimizing asymptotic
missing information where the asymptotics are done using many replications each
consisting of a fixed number of observations from the process. It can be argued
that one should instead consider one process and let the total time of observation
tend to infinity. This leads to a very different prior; see Berger and Yang (1992).
Choosing priors in these problems is a controversial issue. This paper is followed
by a lengthy discussion where the virtues of various priors are debated.

Piccinato, L. (1973). Un Metodo per determinare distribuzioni iniziali relativamente non-informative.
Metron 31, 1-13.

Derives priors that yield, for any experimental result, posteriors concentrated on
an empirical estimate of the parameter.

Piccinato, L. (1978). Predictive distributions and non-informative priors. Trans. 7th Prague Conf.
Information Theory.

A predictive distribution is conservative if the data are a typical point with
respect to the distribution. Here, a typical point means a point that minimizes
some functional, such as squared error. Priors that yield conservative predictive
distributions are derived.
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Pinkham, R.S. (1966). On a fiducial example of C. Stein. .J. Roy. Statist. Soc. B. 37, 53-54.

Responds to Stein’s (1959) proof that a one-sided « level Bayes credible region
has frequentist coverage tending to zero as n — oo for the problem of estimating
5 &2 using a flat prior when X; ~ N(&;,1), ¢ =1,...,n. Stein’s proof assumes
that €2 = o(n?). The author shows that if ¢ = Mn" + o(1) where M > 0
and h > 2 then the posterior probability content and frequentist coverage agree
asymptotically. See section 4.2.2.

Press, S. James (1993). The de Finetti transform. Technical report 201, Department of Statistics,
University of California, Riverside.

Considers finding priors and models that produce exchangeable sequences of ran-
dom variables such that the marginal distribution of the data has maximum
entropy, possibly subject to moment constraints.

Regazzini, E. (1987). De Finetti’s coherence and statistical inference. Ann. Statist. 15, 845-864.

Investigates conditions that guarantee that a posterior be coherent in the sense
of de Finetti. This notion of coherence is weaker than that developed by Heath
and Sudderth (1978, 1989) and Lane and Sudderth (1983).

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length.
Ann. of Statist. 11, 416-431.

Uses ideas from coding theory to simultaneously estimate parameters and choose
models. He defines a universal prior for the integers that approximates Jeffreys’s
prior but is proper.

Seidenfeld, T. (1979). Why I am not an objective Bayesian: some reflections prompted by
Rosenkrantz. Theory and Decision. 11, 413-440.

Critique of Rosenkrantz (1977) and, more generally, of objective Bayesian infer-
ence. Emphasis is placed on inconsistencies that arise from invariance arguments
and from entropy methods based on partial information.

Seidenfeld, T. (1987). Entropy and uncertainty. In Foundations of Statistical Inference. 1.B.
MacNeill and G.J. Umphrey (eds.) 259-287, Reidel.

Critique of the method of maximum entropy. Discusses the disagreement between
maximum entropy and conditioning. Then goes on to discuss the Freidman-
Shimony (1971) result that it is not possible to extend the algebra to fix this
problem, except by extending in a degenerate way. Shows that there is a conflict
between maximum entropy and exchangeability. Also critiques the supposed
connections between frequencies and maximum entropy.
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Severini, Thomas, A. (1991). On the relationship between Bayesian and Non-Bayesian interval
estimates. J. Roy. Statist. Soc. B. 53, 611-618.

Shows that in some cases some priors give HPD regions that agree with nominal
~3/2

frequentist coverage to order n

Severini, Thomas, A. (1993). Bayesian interval estimates which are also confidence intervals. J.

Roy. Statist. Soc. B. 55, 533-540.

Shows how to choose intervals so that posterior probability content and frequen-
tist coverage agree to order n=%/? for a fixed prior.

Sinha, S.K. and Zellner, Arnold. (1990). A note on the prior distributions of Weibull parameters.
SCIMA, 19, 5-13.

Examines Jeffreys’s prior, Zellner’s prior and Hartigan’s (1964) asymptotically
locally invariant prior for the Weibull.

Smith, A.F.M. and Spiegelhalter, D.J. (1982). Bayes factors for linear and log-linear models with
vague prior information. J.R.S.S. B 44, 377-387.

Priors for computing Bayes factors are obtained by using an imaginary prior sam-
ple. This sample is the smallest sample that would just favor the null hypothesis.

Spall, J.C. and Hill, S.D. (1990). Least-informative Bayesian prior distributions for finite samples
based on information theory. IEEE Trans. Aut. Control. 35 580-583.

Considers the least informative prior to be that which maximizes the expected
gain in Shannon information. (Asymptotically, this would be (1).) Approximates
this prior by considering a finite set of base priors, especially finite sets of normals,
and maximizing the expected gain. See Berger, Bernardo and Mendoza (1989)
for a discussion on some problems with maximizing the non-asymptotic version
of the gain in information.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics
and Probability, 1, 197-206. University of California Press, Berkeley.

Establishes the now famous result that the maximum likelihood estimator (and
hence the Bayes estimator using a flat prior) of the mean for a multivariate
normal is inadmissible for dimensions greater than or equal to 2.

Stein, C. (1959). An example of wide discrepancy between fiducial and confidence intervals. Ann.

Math. Statist. 30, 877-880.
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Suppose X; ~ N(&,1), ¢ = 1,...,n independently. The author shows that a
one-sided « level Bayes credible region for Y, ¢Z using a flat prior for (&4,...,&,)
has frequentist coverage tending to zero as n — oo. The proof assumes that
£? = o(n?). This assumption is crucial; see Pinkham (1966).

Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution.
In Sequential Methods in Statistics, Banach center publications, 16. Warsaw: PWN-Polish
Scientific Publishers.

Examines the argument in Welch and Peers (1963) which shows that one sided
« level posterior Bayesian intervals based on (1) have coverage o + O(1/n). A
different proof is given and then an extension is made for the case where the
parameter space is multi-dimensional and there is one parameter of interest.

This is the basis of Tibshirani (1989).

Stigler, Stephen M. (1982). Thomas Bayes’s’ Bayesian inference. J. Roy. Statist. Soc. A. 145
250-258.

Argues that Bayes’s use of a uniform prior for the parameter # of a binomial was
not based on the principle of insufficient reason applied to § but rather to X,,,
the number of successes in n trials. Requiring this for each n implies a uniform
prior for 6.

Stone, M. (1963). The posterior ¢ distribution. Ann. Math. Statist. 34, 568-573.

Shows that the prior m(y,c) o ¢! may be justified because the posterior is

the probability limit of a sequence of proper priors. Similar results, of much
greater generality are proved in Stone (1965, 1970) and are related to the notion
of coherence (section 4.2.1).

Stone, M. (1964). Comments on a posterior distribution of Geisser and Cornfield. J. Roy. Statist.
Soc. B, 26, 274-276.

Establishes that a prior recommended by Geisser and Cornfield (1963) for infer-
ence in the multivariate normal model cannot be justified as the probability limit
of a sequence of proper priors. See section 4.2.1.

Stone, M. (1965). Right Haar measures for convergence in probability to invariant posterior
distributions. Ann. Math. Statist., 36, 440-453.

Shows that the right Haar measure is the only relatively invariant measure such
that there exists a sequence of proper priors for which the posteriors converge
in probability to the posterior based on the invariant prior, for all § € ©. This
type of convergence, a prospective asymptotic justification, is in contrast to the
retrospective justification that uses a sequence of proper priors that depends on
the observed data case in stable estimation. See section 3.2.
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Stone, M. (1970). Necessary and sufficient conditions for convergence in probability to invariant
posterior distributions. Ann. Math. Statist. 41, 1349-1353.

Simplifies and generalizes Stone (1965). Shows that an invariant posterior can
be obtained as a probability limit of proper priors if and only if the prior is
right Haar measure and there exists an asymptotically right-invariant sequence
of proper priors. Introduces two examples of non-amenable groups that appear
later (Stone 1976) as examples of strong inconsistencies.

Stone, M. (1976). Strong inconsistency from uniform priors (with discussion). J. Amer. Statist.

Assoc. 71, 114-125.

Presents two examples of strong inconsistencies in which P(A|x) = a for all =
but P(A|f) = b for all § where a # b. One, the famous flatland example is based
on the free group with two generators (a non-amenable group). The second is
the general linear group. These inconsistencies can be viewed as examples of the
non-conglomerability of finitely additive priors; see Stone (1982).

Stone, M. (1982). Review and analysis of some inconsistencies related to improper priors and
finite additivity. In Logic, Methodology and Philosophy of Science VI. Proc. of the Sizth
International Congress of Logic, Methodology and Philosophy of Science, Hanover 1979, 413-
426. North-Holland Publishing Co.

Reviews some problems with improper priors. The first is an example of noncon-
glomerability of finitely additive priors. The second is a marginalization paradox.
He argues that justifying improper priors by claiming they are limits of sequences
of proper priors can be misleading.

Stone, M. and Dawid, A.P. (1972). Un-Bayesian implications of improper Bayes inference in
routine statistical problems. Biometrika 59, 369-375.

Investigates two marginalization paradoxes arising from improper priors. The
first involves estimating the ratio of two exponential means. The second involves
estimating the coefficient of variation of a normal. More examples are considered

in Dawid, Stone and Zidek (1973).

Stone, M. and Springer, B.G.F. (1965). A paradox involving quasi prior distributions. Biometrika
52, 623-627.

Considers some anomalies in a one-way random effects model using improper
priors. For example, a Bayesian who uses only a marginal likelihood for infer-
ence about the mean and marginal variance ends up with a more concentrated
posterior for x4 than a Bayesian who uses the whole likelihood. See Box and Tiao
(1973, page 303-304) for a comment on this paper.

Sudderth, W.D. (1980). Finitely additive priors, coherence and the marginalization paradox. .J.
Roy. Statist. Soc. B. 42 339-341.
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Shows that the marginalization paradox does not occur if finitely additive distri-
butions are used and the posterior is appropriately defined.

Sun, Dongchu and Ye, Keying (1993). Reference prior Bayesian analysis for Normal mean prod-
ucts. Unpublished manuscript.

Extends the work of Berger and Bernardo (1989) for estimating the product of
Normal means. Here, the number of means is n > 2. There is discussion of
computation and frequentist coverage.

Sweeting, Trevor J. (1984). On the choice of prior distribution for the Box-Cox transformed linear
model.

Argues that Pericchi’s (1981) prior for the Normal model with Box-Cox trans-
formations is inappropriate. Instead, he derives a prior based on invariance ar-
guments.

Sweeting, Trevor J. (1985). Consistent prior distributions for transformed models. In Bayesian
Statistics 2, (J.M. Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith eds.) 755-762,
Elsevier Science Publishers, North Holland.

Constructs priors for models that are transformations of standard parametric
models. This generalizes the work in Sweeting (1984) on Box-Cox transforma-
tions. The goal is to use priors that satisfy certain invariance requirements while
avoiding priors that cause marginalization paradoxes.

Thatcher, A.R. (1964). Relationships between Bayesian and confidence limits for predictions. J
R. Statist. Soc. B 26, 176-210.

Considers the problem of setting confidence limits on the future number of suc-
cesses in a binomial experiment. Shows that the upper limits using the prior
7(p) « 1/(1 — p) and the lower limits using the prior 7(p) o 1/p agree exactly
with a frequentist solution.

Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika. 76 604-608.

Constructs priors to produce accurate confidence intervals for a parameter of
interest in the presence of nuisance parameters. The method is based on re-
sults of Stein (1985) and leads to differential equations that can be solved if the
parameters are orthogonal. See section 3.7.

Villegas, C. (1971). On Haar priors. Foundations of Statistical Inference, V.P. Godambe and D.A.
Sprott (Eds.), 409-414. Toronto: Holt, Rinehart & Winston.

Argues for the right Haar measure when the parameter space is the group of
non-singular linear transformations. He then derives the marginal distribution
for the covariance matrix. Also, the marginal distribution for the subgroup of
upper triangular matrices is shown to be right invariant. See section 3.2.
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Villegas, C. (1972). Bayes inference in linear relations. Ann. Math. Stat. 43 1767-91.

Suppose we observe vectors 1, ..., y, with unknown means zy,..., 2, lying on a
m-dimensional affine subspace. The model is I'(y; — ;) = v; where vy, ..., v, are
a random sample from a standard Gaussian and I is a positive upper triangular
matrix with positive diagonal elements. Using the theory in Villegas (1971) a
prior is derived which turns out to be a product of several Haar measures.

Villegas, C. (1977a). Inner statistical inference. J. Amer. Statist. Assoc. 72, 453-458.

Argues for the 7(p, o) o< ¢ in the location-scale problem based on invariance.
Also shows that the profile likelihood region for u has posterior probability that
is a weighted average of conditional confidence levels. Argues that the prior
7(p,0) o< o7t requires the “external” judgment of independence.

Villegas, C. (1977b). On the representation of ignorance. .J. Amer. Statist. Assoc. T2, 651-654.

Two problems are considered. A scale invariance argument is used to justify
the prior 7(A) o« 1/ for a Poisson model. In a multinomial model, the prior
7(p1y. .., pr) o [Li pi! is justified by requiring permutation invariance and con-
sistency with respect to the collapsing of categories. For example, inferences on
p1 may be made by collapsing the other categories and treating it like a bino-
mial or by finding the marginal of p; from the joint posterior. The consistency
condition requires these to be the same.

Villegas, C. (1981). Inner statistical inference, 11. Ann. Statist. 9, 768-776.

Derives two priors, the inner and outer prior, for group invariant model. The
inner prior is left Haar measure and the outer prior is right Haar measure. Shows
that, for left Haar measure, the posterior probability of the likelihood set is the
posterior expected value of the conditional confidence level. The scale multivari-
ate normal is considered.

Wasserman, Larry (1992). The conflict between improper priors and robustness. Technical report
559, Department of Statistics, Carnegie Mellon University.

Shows that any sequence of neighborhoods around a sequence of increasingly
diffuse priors will lead to finite bounds on posterior expectations if and only if
the neighborhood is contained in a density ratio neighborhood. This implies that
the neighborhood must have limited tail behavior. A proposal is made to replace
the improper prior with certain sequences of data-dependent priors.

Welch, B. L. (1965). On comparisons between confidence point procedures in the case of a single
parameter. J. R. Statist. Soc. B, 27, 1-8.

Compares Bayesian intervals based on (1) to some other asymptotically accurate
confidence intervals; see also Welch and Peers (1963).
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Welch, B.L. and Peers, H.W. (1963). On formulae for confidence points based on integrals of
weighted likelihoods. J. Roy. Statist. Soc. B 25, 318-329.

Considers “Lindley’s problem” of giving conditions under which Bayesian and
confidence inference regions are identical. They treat the asymptotic version of
the problem showing that, in the one-dimensional case, when Jeffreys’s general
rule is used the resulting posterior distribution provides correct confidence cov-
erage probabilities with error of order O,(rn™'). They show that higher-order
agreement is not generally possible. They also extend Lindley’s analysis of the
location problem by conditioning on an ancillary statistic. (A general group-
theoretic treatment of the latter problem was given by Chang and Villegas, 1986.)
See section 3.7.

Ye, Keying. (1993). Reference priors when the stopping rule depends on the parameter of interest.
J. Amer. Statist. Assoc. 88, 360-363.

The author points out that Jeffreys’s rule depends on the stopping rule and that,
if this is ignored, the coverage properties of the credible regions can be poor.
Also considers the Berger-Bernardo prior for sequential experiments.

Ye, Keying. (1992). Bayesian reference prior analysis on the ratio of variances for the one-
way random effects model. Technical report, Department of Statistics, Virginia Polytechnic
Institute and State University.

Uses the Berger-Bernardo method for finding priors in the one-way random effects
model when the ratio of variance components are of interest. Different groupings
of the parameters give different models. These priors are compared.

Ye, Ke-Ying and Berger, James. (1991). Noninformative priors for inferences in exponential
regression models. Biometrika, 78, 645-656.

For the exponential model Y;; ~ N(a + 3p“t*i% a?), the prior w(a, 3, 0,p)
o~! yields an improper posterior. The authors believe that Jeffreys’s prior has
undesirable features, citing Mitchell (1967). They consider the Berger-Berger
prior for this problem and they study the frequentist coverage properties of the
resulting intervals.

Zellner, A. (1977). Maximal data information prior distributions. New Developments in the
Applications of Bayesian Methods, A. Aykac and C. Brumat, (Eds.), 201-215. North Holland,

Amsterdam.

Defines a maximal data information prior (MDIP) to be that prior which maxi-
mizes the difference between the expected Shannon information of the sampling
density and the Shannon information of the prior. Several standard priors are ob-
tained this way. For the binomial model, the unusual prior 7(8) = ¢#’(1—6)(1—9)
is obtained. An earlier version of these ideas appears in Zellner (1971). See sec-
tion 3.8.
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Zellner, Arnold. (1982). Is Jeffreys a “necessarist”? Amer. Statist., 36, 28-30.

Argues that Jeffreys should not be considered a necessarist, as he had been
classified by Savage. This point was elaborated upon by Kass (1982) along the
lines of Section 2.1, here.

Zellner, Arnold. (1993). Models, prior information and Bayesian analysis. Technical report,
Graduate School of Business, University of Chicago.

Considers using entropy methods, not just for finding priors but for constructing
models as well.

Zellner, Arnold and Min, Chung-ki (1992). Bayesian analysis, model selection and prediction.
Invited paper presented at the Symposium in Honor of E.T. Jaynes, University of Wyoming,
Laramie.

Considers several problems. First, there is a discussion of maximal data infor-
mation priors (3.8) with applications to some time series models. Next follows a
discussion on model selection and prediction.

Zellner, A. and Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. Bayesian
Statistics: Proceedings of the First International Meeting Held in Valencia (Spain). J.M.
Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith eds., University of Valencia Press:

Valencia.

Jeffreys’s approach to hypothesis testing is extended to deal with the normal
linear multiple regression model.
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