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The Role of Informative Priors in Zero-Numerator Problems:
Being Conservative Versus Being Candid

Robert L. WINKLER, James E. SMITH, and Dennis G. FRYBACK

The “Rule of Three” gives an approximation for an upper 95%
con� dence bound for a proportion in a zero-numerator problem,
which occurs when the observed relative frequency is zero. We
compare the results from the Rule of Three with those from
a Bayesian approach with noninformative and informative pri-
ors. Informative priors are especiallyvaluable in zero-numerator
problems because they can represent the available information
and because different noninformativepriors can give conicting
advice. Moreover, the use of upper 95% bounds and noninfor-
mative priors in an effort to be conservative may back� re when
the values are used in further predictive or decision-theoretic
calculations. It is better to be candid than conservative, using all
of the informationavailablein forming the prior and considering
the uncertainty represented by the full posterior distribution.
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1. INTRODUCTION

A zero-numerator problem is a situation in which we esti-
mate the probability for an event that is conceivably possible
but has not yet occurred in the data that are available. Exam-
ples (Hanley and Lippman-Hand 1983) include “a still-perfect
surgical record, a � eld trial of a vaccine that uncovered no ma-
jor side effects, an ophthalmology practice in which no patient
with glaucoma was younger than 23 years, an airline that has
never had a fatality.” Our interest in this question was motivated
by considering the false-positive rate for a medical test with a
history of no positive results. Having observed no occurrences
of the event, hence an observed relative frequency of zero, is an
indication of a low probability, but it clearly does not imply a
probability of zero.
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The standard formula for con� dence bounds for a Bernoulli
parameterp breaksdown in a zero-numeratorsituation.The Rule
of Three states that 3=n is a good approximation for an upper
95% con� dence bound for p when we have seen n independent
trials with no occurrences of the event of interest (Louis 1981;
Hanley and Lippman-Hand 1983). Exact con� dence bounds are
not dif� cult to compute, but the Rule of Three approximation is
quite simple and very accurate for large n. Jovanovic and Levy
(1997) adopted a Bayesian approach to generate modi� ed Rules
of Three, which approximate the 0.95 fractile of the posterior
distribution of p under a uniform prior distribution and under a
certain class of informative prior distributions.

This article extends the Bayesian analysis of zero-numerator
problems. In the current literature, applied Bayesian analyses
often use noninformative priors, presumably to avoid inject-
ing subjectivity in the conclusion. In zero-numerator problems
we � nd that the posterior distribution of p and its 0.95 fractile
are quite sensitive to the particular choice of noninformative
prior from among those usually deemed reasonable for infer-
ence about a Bernoulli parameter. This, along with the fact that
noninformativepriors are likely to be highly unrealistic in zero-
numerator problems, suggests that informative priors should
play an especially important role in such problems. We also
demonstrate how the focus on an upper 95% bound, often justi-
� ed by a desire to be conservative, can wind up having the op-
posite effect in some situations. The general Bayesian approach
has the advantage of providing an entire posterior distribution
about p rather than a single bound. This distribution fully de-
scribes our uncertainty about p and can be used in a variety of
different ways in different kinds of analyses.

Section 2 discusses the Rule of Three and some Bayesian
results with noninformative priors, revisiting an example from
Hanley and Lippman-Hand (1983). Section 3 looksat the role of
informative priors in zero-numerator problems. Then, Section 4
examines the motivating example concerning the false-positive
rate and considers what it means to be conservative in such
settings. Some concluding comments are presented in the � nal
section.

2. ZERO-NUMERATOR PROBLEMS WITH
NONINFORMATIVE PRIORS

Following Hanley and Lippman-Hand (1983), suppose that
the standard contrast agent used by radiologists over a long pe-
riod has been shown to cause a serious reaction in about 15 of
every 10,000 patients exposed to it. That is, the known risk with
the old agent is 1.5 per 1,000. Suppose further that a new con-
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trast agent is introduced. Soon afterward, a report of its use in
167 patients appears: no patient has had this reaction. What can
we say about the risk associated with the new agent?

Using the Rule of Three, Hanley and Lippman-Hand (1983)
wouldsay thatwe shouldbe 95% con� dent that the probabilityof
a serious reaction with the new agent is at most 3=167 = 0:018,
or 1:8%. On theotherhand, theprobabilitythat ismost consistent
with the data (the maximum likelihood estimate) is zero. If we
had to use a number for this probability in making a decision
about whether to use the old agent or the new agent, should we
use either of these numbers?

A Bayesian approach to this problem requires the speci� ca-
tion of a prior distribution. A convenient and reasonable prior
used often in Bayesian analysis for Bernoulli processes is the
family of beta distributions, with density

f (p) = pa¡1(1 ¡ p)b¡1=B(a; b) for 0 µ p µ 1; (1)

where B represents thebeta function.Themean isa=(a+b). Beta
distributionsare quiteexible (Johnson and Kotz 1970), capable
of representinga wide range of prior distributions.They are easy
to use for Bernoulli parameters because they allow closed-form
updating with Bayes’ rule. If we start with a Beta(a; b) prior
as in (1) and observe r occurrences of the event in n trials, the
posterior distribution is Beta(a + r; b + n ¡ r). The information
about p represented by the Beta(a; b) distribution in (1) can be
interpreted as equivalent to having seen a patientswith a serious
reaction in a + b patients exposed to the new contrast agent.

A challenge in the Bayesian approach is to identify an ap-
propriate prior. In many cases, Bayesians will suggest a nonin-
formative, or diffuse, prior that is intended to represent little or
no information about the parameter of interest and to have no
material impact on the resulting posterior. This is often done in
order to be conservative,and a noninformativeprior is viewed by
some as providing a more “objective” analysis than an informa-
tive prior. For example, Jovanovic and Levy (1997) suggested
using beta priors with a = 1 and b ¶ 1. The limiting case of
b = 1 corresponds to a uniform distribution,which is often used
as a noninformative prior for a Bernoulli parameter and which

Figure 1. Analysis of p, the risk associated with the new contrast
agent with Beta(a,a) priors.

Jovanovic and Levy (p. 138) called “a limiting and most con-
servative prior in this context.” The posterior distribution is then
Beta(1; n + 1), and Jovanovic and Levy showed that approx-
imating the 0.95 fractile of this distribution gives a Bayesian
Rule of Three as 3=(n + 1). For the example involving the con-
trast agent, this gives 3=168 = 0:017857, which differs from
the Rule of Three’s 3=167 = 0:017964 only beyond the third
decimal place.

There are, however, different noninformative priors that are
used in Bernoulli settings. Unfortunately, they lead to very dif-
ferent results in zero-numeratorproblems.Commonlyused non-
informative priors include Beta(0:5; 0:5) (a Jeffreys prior and a
reference prior) and the improper Beta(0; 0) in addition to the
uniform Beta(1; 1); seeGeisser (1984) for discussionand review
of the rationale for these priors. For 0 < a < 1, the Beta(a; a)
distribution is symmetric and U-shaped, with a mean of 0.5 and
modes at zero and one. As a moves toward zero, more of the
prior density is concentrated near zero and one. Varying a in the
Beta(a; a) prior with 0 < a µ 1 in our example involving the
contrast agent (n = 167), we see from Figure 1 that posterior
0.95 fractiles are arbitrarily close to zero at the low end and as
high as 0.018 when a = 1; the posterior means vary similarly.
Intuitively, as a decreases towards 0, more of the prior mass
is concentrated near 0 and 1. Observing no occurrences of the
reaction effectively wipes out the upper end of the U-shaped dis-
tribution and leaves a posterior that is more concentrated near
zero. For smaller values of n the range of posterior 0.95 fractiles
is much wider, with the low end remaining arbitrarily close to
zero and the high end increasing (to 0.133 when n = 20 and
0.238 when n = 10, for example).

While in many applications the choice of a noninformative
prior doesnot have a material impact on the results, this is clearly
not the case in zero-numeratorproblems.When different schools
of thoughton what is an appropriatenoninformativeprior lead to
very different results, it is clear that theanalysiscannotbeviewed
as objective. With even a little bit of thought about the prior, in
many zero-numerator problems it is clear that any reasonable
set of prior judgments will not be consistent with commonly
encountered noninformative prior distributions, which by sym-
metry placehalf of theirprobabilityon valuesabovep = 0:5. For
example, in the contrast-agent example, such values of p (and
even somewhat lower values of p) would be extremely unlikely
a priori.

3. ZERO-NUMERATOR PROBLEMS WITH
INFORMATIVE PRIORS

For a Bernoulli process with a single, easy-to-interpret pa-
rameter p, it should be feasible to assess a prior distribution that
reects an individual’s prior judgments about p. Jovanovic and
Levy (1997, p. 138) considered Beta(a; b) priors and recognized
the need “to choose a and b in such a way as to ascertain agree-
ment with the a priori knowledge about p.” Then they go on
to restrict their class of priors by setting a = 1 and requiring
b ¶ 1 on the grounds that the uniform prior is then a limit-
ing case and that the prior mode is zero when we move away
from the limiting case. This leads to another Bayesian Rule of
Three (an approximation to the posterior 0.95 fractile of p) of
3=(n + b). The assumption that a = 1 is restrictive and we
could argue just as easily for a different noninformative prior,
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Figure 2. Analysis of p, the risk associated with the new contrast
agent with Beta (1, b) and Beta(.5, b) priors.

such as Beta(0:5; 0:5), as a limiting case. The assumption about
a matters: in Figure 2, we see that Beta(1; b) and Beta(0:5; b)
priorswith thesame prior mean can yieldvery different posterior
means and 0.95 fractiles in the contrast-agent example.

Since the posterior is very sensitive to the choice of a in zero-
numerator problems, the limitation to Beta(1; b) priors seems
arbitrary and unduly restrictive. If the goal is to allow the use
of an informative prior, why should we restrict ourselves to
Beta(1; b) distributions?Given the ease of computingfractilesof
beta distributionswith today’s computers (e.g., Microsoft Excel
includes a function that generates any fractile of a beta distribu-
tion), simple approximationsto 0.95 fractiles seem unnecessary.
Allowing Beta(a; b) priors for any a > 0 and b > 0 provides a
much richer class of possibilitieswith minimal effort. Moreover,
with additional effort a full analysis is possible with any proper
prior using modern Bayesian computational techniques. For a
discussion of Monte Carlo methods in Bayesian computation,
for example, see Chen, Shao, and Ibrahim (2000).

There are a variety of ways one might assess a prior distribu-
tion; see, for example, Spetzler and Sta�el von Holstein (1975),
and Morgan and Henrion (1990). We have found it relatively
easy to assess the prior mean (this is the prior probability that
the event will occur on any given trial) together with fractiles
(say, 5th and/or 95th fractiles) from the prior distribution. One
can then � t a beta distributionor some other distribution to these
assessments. For example, before the data from the 167 patients
are seen in the example with a new contrast agent, a natural
value to take for the prior mean might be 0.0015, the known
risk with the old agent. Thus, we have a=(a + b) = 0:0015.
Further suppose that we feel a priori that there is a 95% chance
that p is less than 0.75%, � ve times the risk of the old agent. We
can � t these assessments with a Beta(0:042; 27:96) distribution,
which implies that our prior uncertainty about p is equivalent to
having seen .042 occurrences of the reaction in a sample of size
28 (= a + b).

With this Beta(0:042; 27:96) prior and a sample of n = 167
patients, of whom r = 0 had the reaction of concern, the pos-
terior distribution is Beta(:042; 194:96). Thus, after seeing the
data the posterior mean of p is 0:022%; this is the predictive
probability that the next patient will have a serious reaction to

the contrast agent. The 0.95 fractile of the posterior distribution
is 0.11%. Observing no patients with the reaction shifts the dis-
tribution of p to the left, as would be expected. What if we had
chosen a different prior distribution?With a prior mean equal to
the risk from the old agent, 0.0015, and prior strengths (a + b)
varying from 1 to 5,000, Figure 3 shows that the revised 0.95
fractile varies substantially but is never above 0:004(0:4%); it
is always much smaller than the Rule of Three value of 1.8%.

4. BEING CONSERVATIVE VERSUS BEING CANDID

TheRuleof Three focuseson theupper95% con� dencebound
for p in an attempt to provide a conservative estimate of p. How-
ever, what seems to be conservative in terms of p may not be
conservative for some probability or other value that is a func-
tion of p. Our interest in zero-numerator problems was stimu-
lated when Casey, the newborn daughter of one of the authors
(Smith), was the � rst to test positive(after approximately13,000
correct negatives) in an experimental screening program to test
blood for certain genetic metabolic disorders. Casey’s situation
is described and analyzed by Smith and Winkler (1999) and
Smith, Winkler, and Fryback (2000). The relevant point for this
article is that the probability of concern was the probability that
Casey actually had the metabolic disorder indicated by the test
result. This can be found by applying Bayes’ rule:

P (Dj+) = P (D)P (+jD)=[P (D)P (+jD)

+P (noD)P (+jnoD)]; (2)

where P (D) is the prevalence of the disorder, P (+jD) is the
correct-positive rate (in medical terms, the sensitivity), and
P (+jnoD) is the false-positive rate (in medical terms, one mi-
nus the speci� city).The data from the screeningprogram pertain
directly to p = P (+jnoD), the false-positive rate.

What would the Rule of Three say with respect to the false
positive rate? Thinking in terms of having seen no false pos-
itives in the 13,000 noD newborns, we could say that we are
95% con� dent that the chance of a false positive is at most
3=13;000 = 0:000231. Using thisas the false-positiverate in ap-
plying (2) to Casey’s situation, with estimates of 1=250;000 for

Figure 3. Analysis of p, the risk associated with the new contrast
agent with Beta(a, b) priors and prior mean = .0015.
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the prevalence and 0.999 for the sensitivity, yields a probability
of 0.018 that Casey has the disorder given a positive test result.
On the other hand, if we use the maximum likelihoodestimateof
zero for the false-positive rate, the probability that Casey has the
disorder is one given a positive test result. The “conservative”
estimate given by the upper 95% con� dence bound of the Rule
of Three thus gives a lower diagnostic probability than the max-
imum likelihood estimate. In what sense is this conservative?

To make a “conservative”estimate generallymeans to be cau-
tious in the estimate, preferring to err on the high side rather than
the low side for an estimate of a probability of a “bad” event.
This situation does not allow an unambiguous way to hedge.
The desire to be conservative in the estimate of the false-positive
rate leads us to adopt a higher false-positive rate (e.g., the 95th
percentile of the Rule of Three), which in turn leads us to un-
derestimate the probability that Casey has the disorder. To be
conservative about the diagnostic probability, we would want
to hedge toward lower values of p, not higher values. Thus, the
desire to be conservative may back� re in some scenarios.

The more important point, however, is that in order to make
sound decisions we should be candid about what is known and
report the entiredistributionrather thanan arbitrary “worst case”
scenario. We should not try to be conservativewith the inputs to
the analysis, either in terms of the selection of a prior distribu-
tion or in the use of any measure(s) to summarize the posterior
distribution. The aspects of the posterior distribution that are of
interest may vary from problem to problem.

In Casey’s situation, based on available information about
the test and consultation with medical experts, we assessed
a Beta(1; 999) prior for p, implying a Beta(1; 13;999) poste-
rior. To calculate a diagnostic probability for Casey, the ap-
propriate false-positive rate to use is the posterior mean of p,
1=14;000 = 0:0000714. Based on all of the information avail-
able, this is the probabilitythatCasey wouldhavea false positive.
Using this value in Bayes’ rule gives a probability of 0.053 that
Casey has the de� ciency given a positive test result; this is al-
most three times as large as the probability of 0.018 based on
a Rule-of-Three value for p. Because we are interested in the
probability that Casey had a false-positive test result, the appro-
priate estimateof p is the posterior mean. In other contexts, other
summary measures or the entire distribution may be required.
For example, when deciding whether to gather more informa-
tion by running more trials or whether to use the screening test
on a particular population, we need the full distribution of p in
order to � nd the distribution of the number of false positives in
the additional trials or in the population. This latter distribution
will be beta-binomial if p has a beta distribution.

5. CONCLUSIONS

The Bayesian approach represents uncertainty about a prob-
ability and allows us to update our information as new evidence
becomes available. The importanceof prior information is high-

lighted in the zero-numerator problem. For � xed n, different
noninformativepriors that are commonlyused yielddifferent re-
sults, implying that such priors are not really noninformative in
this case. In zero-numerator situations, the assumptions implied
by noninformative priors (e.g., half of the probability assigned
to values of p greater than 0.5) seem inappropriate and give in-
appropriate results. Careful assessment of a prior distribution
that reects all of the available information about p is always
important, but it is especially important in zero-numerator sit-
uations, just as it is, for example, in multiparameter situations
with identi� cation problems.

The Bayesian approach also providesa full posterior distribu-
tion as well as any predictive distributions of interest, enabling
us to understand how likely various risks are. If we want a par-
ticular summary measure (e.g., a point or interval estimate or a
given fractile), we can easily � nd that from the distribution. In
contrast, the Rule of Three gives only a single probability, tak-
ing an arbitrary cutoff value with 95% probability in an attempt
to be conservative. The analysis of Casey’s situation in Section
4 shows how such conservatism may back� re. When we plug
the upper 95% bound from the Rule of Three into the formula
for � nding the risk of Casey having the disorder, the result is
an unusually low risk because high false-positive rates translate
into low risks of the de� ciency. When probabilities such as the
probability of a harmful side effect or a false-positive rate are
used in further analysis for diagnostic or decision-making pur-
poses, we should consider all of the available information and
be candid about what is known about such probabilities.
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