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Abstract

For the point null hypothesis testing problem it is shown that, in some situations,
the classical evidence against H0, expressed in terms of the p–value, is in the range
of Bayesian measures of evidence. In these situations, it is therefore possible to
reconcile measures of evidence between Bayesian and frequentist approaches. More
specifically, for the class of unimodal, symmetric and nonincreasing prior distribu-
tions, it is shown that the infimum of the posterior probability of H0 is numerically
equal to the p value. The discrepancy which appears in the literature dedicated to
this subject until now, is due to the form of the mixed distribution and not due to
its use as a prior.
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1 Introduction

In testing a point null hypothesis Berger and Sellke (1987) and Berger
and Delampady (1987) calculated the discrepancy between the classical
approach, expressed in terms of the p value, and the Bayesian approach,
expressed through the Bayes factor and the posterior probability.

Alternatively, Cassella and Berger (1987) notice that there is no discrep-
ancy in the one-sided testing problem, and they argue that the difference
in the point null case is because a mixed type of prior distribution is used.
That is to say, the distribution assigns mass π0 to the point θ = θ0, and
spreads out the remainder, 1− π0, over θ 6= θ0 according to a density π(θ).

The inconvenience of using p–values is well known, some important
papers about this topic are Lindley (1957), Berger and Delampady (1987)
and Hwang et al. (1992).
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The different behavior of the p–value in the one–sided and two–sided
testing problem is one of the reasons for the present paper. We will prove
that the discrepancy observed until now between the classical and the
Bayesian approach in the two–sided (point null) problem, can be tempered
if one uses a mixed prior distribution with a convenient value of π0, the
mass assigned to the null hypothesis. In this case, the posterior probability
of the point null hypothesis and the p value match.

This does not imply that the mixed distribution must be modified in
this way, in our opinion, we must resolve the problem with the Bayesian
approach. If you want to know what would have happened with the classical
approach, you can use the value of π0 as given in Theorem 1. In either
case this paper shows the effect, in the posterior probability of the null
hypothesis, of the choice of value π0.

There is a substantial literature on reconciliation between p–values
and posterior probabilities. Some important references are Edwards el al.
(1963), Pratt (1965), Dickey and Lientz (1970), Cox and Hinkley (1974),
DeGroot (1977), Bernardo (1980), Rubin (1984), Casella and Berger (1987),
Ghosh and Mukerjee (1992) and Mukhopadhyay and DasGupta (1997).

In Section 2 we present some preliminaries. Section 3 contains the re-
lationship between classical and Bayesian evidence, and Section 4 contains
some conclusions and comments.

2 Preliminaries

We consider the point null testing problem

H∗
0 : θ = θ0 versus H∗

1 : θ 6= θ0, (2.1)

based on observing a random variable, X, with density f(x|θ) continuous
at θ0. We suppose, moreover, that the probability of θ = θ0 is π0 > 0,
in such a way that the prior information is given by a mixed distribution
assigning mass π0 to the point θ = θ0, and spreading the remainder, 1−π0,
according to a density π(θ) over θ 6= θ0.

Following Berger and Sellke (1987) we seek to minimize Pr(H0|x) over
a reasonable class of prior distributions, defined by
GUS = { All distributions which are unimodal, symmetric about θ0,

and nonincreasing on |θ − θ0| }.
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If one wants to compare the p-value with the posterior probability of the
null hypothesis, it seems reasonable to work with a class of priors instead
of a single prior distribution, since the p–value is based on the objective
frequentist model and doesn’t use prior information. Thus an extensive
class of prior distributions which represent our prior belief is used, and the
posterior distribution within this class is computed.

We consider the infimum of the posterior probability of the null hypoth-
esis, as our Bayesian measure of evidence, where the infimum is taken over
GUS . We take the infimum rather than the supremum or any other bound,
because when the infimum is small the null hypothesis must be rejected ac-
cording to the interpretation of the p–value. Another reason can be found
in Berger and Sellke (1987), Comment 3. This development is similar to
that of Casella and Berger (1987) who reconcile Bayesian and frequentist
evidence in the one–sided testing problem and, as we have said above, we
are interested in clarifying the reason for the discrepancy between both
approaches in the point null testing problem.

As in Berger and Delampady (1987), we propose that a precise hypoth-
esis can be represented as

H0 : |θ − θ0| ≤ ε versus H1 : |θ − θ0| > ε, (2.2)

where ε is “small”, and we replace the point null hypothesis by this interval
hypothesis.

An interesting discussion about the difference between (2.1) and (2.2)
can be found in Lindley (1988) and the discussion contained therein.

The advantage of replacing (2.1) by (2.2) is twofold:

(i) we do not need a prior distribution of mixed type in (2.2)

(ii) if we take (2.1), given π(θ),then we can fix a value of ε and compute

π0 =
∫

|θ−θ0|≤ε
π(θ)dθ. (2.3)

The choice of ε is more intuitive than just selecting an arbitrary value for
π0 – in the literature it is usually 1

2 .

One can argue that a hypothesis with prior probability as in (2.3) is
not believable, particularly when ε is small, but we are talking about a
scenario where the protagonist is π(θ); and we can choose ε to make π0
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equal to 1/2, as is usually done in the literature. If π0 is small, this is the
prior distribution which, in some situations, produces the same effect as
the p–value, as we will show.

We illustrate a real world statistical motivation for this approximation
with two examples.

The first one can be seen in Kass and Raftery (1995). They suppose
that progress within the educational system is determined largely by ed-
ucationally relevant attributes and not by other educationally irrelevant
attributes, such as social class. If we reduce this problem to test if social
class is relevant to educational attainment, we should use a prior distribu-
tion with π0 (and ε) rather small.

The second example is contained in Casella and Berger (1987). In a
regression problem we may be interested in testing H∗

0 : β = 0 where β is a
regression coefficient. It would indicate that the independent variable has
no effect on the response variable and, credibly, the researcher would not
place a high prior probability on H∗

0 since, in this case, the independent
variable would not be included in the experiment.

3 Main results

In this section we observe that if we consider the class of prior distributions
GUS , the value of ε in (2.2) can be chosen such that Pr(H∗

0 |x), the infimum
of the posterior probability of the null hypothesis and the p value match.

Theorem 3.1. For the hypothesis in (2.1), if we define π0 as in (2.3) and
∫

R
f(x|θ) dθ < ∞, (3.1)

then

inf
π∈GUS

Pr(H∗
0 |x) =

(

1 +
1
2ε

∫ +∞

−∞

f(x|θ)
f(x|θ0)

dθ
)−1

. (3.2)

Proof. Computing the infimum of Pr(H∗
0 |x) over the class GUS is the same

as computing it over the class, GU , of uniform distributions U(θ0−k, θ0+k),
k varying in <, see Casella and Berger (1987), Lemma 3.1, so

inf
π∈GUS

Pr(H∗
0 |x) = inf

π∈GU

π0f(x|θ0)
π0f(x|θ0) + (1− π0)

∫

θ 6=θ0
π(θ)f(x|θ) dθ

,
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it should be noted that π0, according to (2.3), depends on k. By replacing
π0 by (2.3) for GU , this expression becomes

inf
k

ε
kf(x|θ0)

ε
kf(x|θ0) +

(

1− ε
k

) ∫

|θ−θ0|≤k
1
2kf(x|θ) dθ

,

then

Pr(H∗
0 |x) =

2f(x|θ0)
2f(x|θ0) +

(1
ε −

1
k

) ∫

|θ−θ0|≤k f(x|θ) dθ
,

and the variation of Pr(H∗
0 |x) in relation to k is given by

∂
∂k

Pr(H∗
0 |x) =

− 2f(x|θ0)
[

1
k2

∫

|θ−θ0|≤k f(x|θ) dθ +
(1

ε −
1
k

)

[f(x|k) + f(x| − k)]
]

(

2f(x|θ0) +
(1

ε −
1
k

) ∫

|θ−θ0|≤k f(x|θ) dθ
)2 .

We observe that
∂
∂k

Pr(H∗
0 |x) < 0,

therefore, Pr(H∗
0 |x) is decreasing in k and the minimum is attained on the

boundary, i.e k goes to infinity. Then

inf
π∈GUS

Pr(H∗
0 |x) = lim

k→∞

2f(x|θ0)
2f(x|θ0) +

(1
ε −

1
k

) ∫

|θ−θ0|≤k f(x|θ) dθ
,

and hence we obtain (3.2), because

1
k

∫

|θ−θ0|≤k
f(x|θ) dθ =

1
k

∫

<
I(θ0−k,θ0+k)(θ)f(x|θ) dθ ≤ 1

k

∫

<
f(x|θ) dθ.

which proves the theorem.

For a fixed ε, expression (3.2) gives us the infimum of the posterior
probability of the point null hypothesis.

If an appropriate statistic, T (X), exists, the p value – or observed signi-
ficance level – of the observed data, x, for the point null testing problem
is

p(x) = Prθ=θ0(|T (X)| ≥ |T (x)|). (3.3)
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A more general definition can be seen in Lehmann (1986), pg 170. For
the interval hypothesis, the p–value is

pε(x) = sup
θ: |θ−θ0|≤ε

Prθ(|T (X)| ≥ |T (x)|).

Berger and Delampady (1987) seek conditions under which pε(x) ≈
p(x).

Moreover, a value of ε exists, say ε∗, so that the p–value and the infimum
of the posterior probability (3.2) are equal. In order to compute ε∗, it is
sufficient to equal (3.2) and (3.3), and then

ε∗ =
1
2

p(x)
1− p(x)

∫ +∞

−∞

f(x|θ)
f(x|θ0)

dθ. (3.4)

We observe that we cannot choose ε∗ directly, since (3.4) depends on x.
We choose a value of ε near to ε∗, since Pr(H∗

0 |x) is a continuous function
of ε, we will obtain that Pr(H∗

0 |x, ε) is approximately equal to Pr(H∗
0 |x, ε∗)

and then (3.2) is equal to the p–value.

Example 3.1. Let us suppose X = (X1, X2, . . . , Xn), where Xi are i.i.d.
N(θ, σ2) random variables, with σ2 known. Then

Pr(H∗
0 |x) =

[

1 +
1
2ε

√
2πσ√
n

e
n

2σ2 (x−θ0)2
]−1

.

Table 1 shows, for σ2 = 1 and n = 10, the infimum of the posterior
probability of the null hypothesis, for some specific, important values of t,
and some values of ε.

In Table 1 it can be observed that Pr(H∗
0 |x, ε) is relatively close to

the p–value. This is also illustrated in Figure 1, where Pr(H∗
0 |x, ε) is

represented for ε = 0.1, 0.2, 0.3, and 0.4, together with the p–value and
Pr(H∗

0 |x) when π0 = 1
2 . We can see that this last curve is far from the

p–value and Pr(H∗
0 |x, ε).

Whereas the value of ε∗ given by (3.4) is

ε∗ =
1
2

p(x)
1− p(x)

√
2πσ√
n

e
n

2σ2 (x−θ0)2 ,
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t
ε 1.645 1.960 2.576 3.291

0.1 0.0612 0.0356 0.0091 0.0011
0.3 0.1636 0.0998 0.0267 0.0034
0.5 0.2449 0.1560 0.0437 0.0056

Table 1: Infimum of the posterior probabilities of the null hypothesis over GUS ,
for X ∼Normal

Figure 1: P–value, Pr(H∗
0 |x, ε) and Pr(H∗

0 |x, π0 = 1
2 )

if we let t =
|x− θ0|

σ
√

n, then

ε∗ =
1
2

p(t)
1− p(t)

√
2πσ√
n

e
t2
2 .

Furthermore, in order to show the equivalence between (2.1) and (2.2)
we can compute

Pr(H0|x) = inf
π∈GUS

Pr(H0|x)
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which is given by

Pr(H0)|x) = lim
k→∞

Pr(H0|x)

= lim
k→∞

Φ(t + ε
√

n
σ )− Φ(t− ε

√
n

σ )

Φ(t + k
√

n
σ )− Φ(t− k

√
n

σ )

= Φ
(

t + ε
√

n
σ

)

− Φ
(

t− ε
√

n
σ

)

.

Table 2 shows, for the same setup as Table 1, for some specific values of
t, the values of ε∗ such that Pr(H∗

0 |x) equals the p value, it also shows
Pr(H0|x) and the infimum of the posterior probability of H∗

0 when π0 = 1
2 .

We observe that the second and fourth columns are close if we choose ε
properly. On the other hand, the discrepancy between the second and fifth
columns is bigger, i.e. when we set π0 = 1

2 in the mixed distribution.

t p value = Pr(H∗
0 |x) ε∗ Pr(H0|x) Pr(H∗

0 |x, π0 = 1
2)

1.645 0.1 0.170 0.1198 0.390
1.960 0.05 0.142 0.0575 0.290
2.576 0.01 0.111 0.0121 0.109
3.291 0.001 0.089 0.0011 0.018

Table 2: Values of ε∗ such that the p value equals Pr(H∗
0 |x), Pr(H0|x), for an

appropriate ε and Pr(H∗
0 |x, π0 = 1

2 ). All infimums are taken over GUS

4 Discussions and conclusions

For the problem of testing a point null hypothesis we believe that taking
a density, π(θ), and fixing a suitable value of ε in accordance with the in-
tuition of the decision maker, is an appropriate method. If the decision
is to choose a value of ε close to (3.4), the infimum of Pr(H0|x) is ap-
proximately equal to the infimum of Pr(H∗

0 |x). Thus, from the Bayesian
point of view, we take the same decision in both problems (2.1) and (2.2),
whenever the prior distribution used is near to the distribution in which
the infimum is reached. Taking π0 in the mixed distribution to be equal
to the probability of the interval, as in (2.3), has its advantages. First it
allows us to fix the value of the prior probability of the null hypothesis,
π0, for those cases where we do not know how to do it. Secondly, a mixed
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prior distribution is not used for testing a precise hypothesis like (2.2), so
the discrepancy observed by Casella and Berger (1987) is not due to using
a mixed prior distribution as they asserted. Thirdly, by Theorem (3.1), the
infimum is achieved when the prior is the improper prior distribution which
seems a natural form of impartiality. In this situation we have shown that
the p–value, the posterior probability of the point null hypothesis and the
posterior probability of the interval are close.

Finally, taking the infimum over the class GUS , we proved that this was
close to the p–value, and it is was shown that the p–value is in the range of
the Bayesian measure of evidence, whenever the infimum has been reached.
On the other hand, it is clear that if we perform a subjective Bayesian
analysis, the posterior probability of the null is larger than the p–value.

Further research must be carried out with our construction in the point
null testing problem using other classes of prior distributions and other
classical measures.
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