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Econometrica, Vol. 41, No. 1 (January, 1973)

A SUBORDINATED STOCHASTIC PROCESS MODEL WITH FINITE
VARIANCE FOR SPECULATIVE PRICES

By PerER K. CLARK!

S. Bochner’s concept of a subordinate stochastic process is proposed as a model for
speculative price series. A general class of finite-variance distributions for price changes is
described, and a member of this class, the lognormal-normal, is tested against previously
proposed distributions for speculative price differences. It is shown with both discrete
Bayes’ tests and Kolmogorov-Smirnov tests that finite-variance distributions subordinate
to the normal fit cotton futures price data better than members of the stable family.

1. INTRODUCTION

THE PAST SEVENTEEN years have seen a large amount of research by academic
economists on prices in speculative markets, an area which was formerly studied
almost exclusively by financial speculators and their advisors.? Considering the
time series of prices at short intervals on a speculative market such as that for
futures in commodities, or corporation shares, one primary characteristic is
evident. If X, denotes price at time ¢t and 4X, = X, — X,_,, examination of the
data suggests that:

E(AX)=0 and E(AX,-AX)=0, t+#s.

The increments in the price process are stationary in the mean and uncorrelated ; a
random walk model

1) X,=X,_1+e, E(e) = 0, E(ge,) = 0, t#s

explains these empirical facts well.

Besides empirical realism, the random walk model has a theoretical basis (see
[3]). If price changes are correlated, then alert speculators should notice the
correlation and trade in the right direction until the relationship is removed. This
was first shown by Bachelier in 1900, when he derived the diffusion equation from
a condition that speculators should receive no information from past prices.
Equation (1) is, of course, a solution to a discrete formulation of the diffusion
problem.

It is also empirically evident that the price changes 4X,, however independent,
are not normally distributed. Instead of having the normal shape, which would be
the case if the components in 4X, were almost independent and almost identically
distributed,® 4X has too many small and too many large observations, as pictured
in Figure 1.

! Thanks are due to Hendrik Houthakker and Christopher Sims for both encouragement and
advice in developing this paper. As usual, all remaining errors are my own. This research was supported
by a Harvard Dissertation Fellowship, NSF Grant 33-708, and the Boston College Department of
Economics.

2 See Clark [6] for a comprehensive bibliography, or Cootner [8] for a collection of these articles.

3 Feller [9], Gnedenko and Kolmogorov [10], and Loéve [13] contain good expositions on the
conditions under which the Central Limit Theorem is satisfied.
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FiGure 1—Distribution of AX, the daily changes in price.

One way to express this is to say that the distribution of 4 X is leptokurtic, since
the sample kurtosis,

o (I/mZ(AX; — AX)*
KAX = [E— D)
[(A/mZ(AX; — AX)*]?

is much greater than 3, the value for a normal population.

It is evident, then, that conditions sufficient for the Central Limit Theorem are
not met by the influences which make up 4X. The violation of these conditions
and the reason for the leptokurtic distribution of 4X is the subject of the present
article.

In 1963, Mandelbrot set out to explain this non-normality in price changes that
had been observed by Kendall [11] and many others.* The observed distribution
of price changes clearly indicates that the Central Limit Theorem does not apply
to them. But what condition is being violated? Mandelbrot decided that the
individual effects making up a price change did not have finite variance, but were
still independent. The distribution of price change should then belong to the stable
family of distributions, which were shown by Levy [12] to be the only possible limit
distributions for sums of independent random variables.’ These stable distribu-
tions have an unbounded kurtosis and will usually give high values for any measured
sample kurtosis, thus making them good candidates for the distribution of price
change.

4 Mandelbrot [14] lists many references to the problem of non-normality, one as early as 1915.
5 Gnedenko and Kolmogorov [10] is the classic exposition in this field.
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The opposing hypothesis presented and tested in this paper is that the distribu-
tion of price change is subordinate® to a normal distribution. The price series for
cotton futures evolves at different rates during identical intervals of time. The
number of individual effects added together to give the price change during a day
is variable and in fact random, making the standard Central Limit Theorem
inapplicable.

The different evolution of price series on different days is due to the fact that
information is available to traders at a varying rate. On days when no new informa-
tion is available, trading is slow, and the price process evolves slowly. On days
when new information violates old expectations, trading is brisk, and the price
process evolves much faster.

2. DISTRIBUTIONS SUBORDINATE TO THE NORMAL DISTRIBUTION

The Central Limit Theorem

As we have noted in the last section, empirical evidence shows that the random
elements that make up cotton futures price differences do not obey conditions
sufficient for the Central Limit Theorem to apply. In the following development,
the Central Limit Theorem is generalized in a way that makes the resulting limit
distributions applicable to the distribution of cotton futures price differences.

First, one variant of the Central Limit Theorem and two lemmas are stated

without proof:’
LEMMA 1: Forn=1,2,...,and t > 0,

ei'_l_it_(i‘tf ..... M St_n.
2! n—1! n!

That is, the Taylor Series expansion for ¢ differs from e’ by less than the first
excluded term.

LEMMA 2: Let m, = [©_y"dF,, and M, = [®_|y|"dF,, where y is a random
variable and F, is its distribution ; m, and M, are extended real numbers. If M,y < oo,
then the nth derivative of ® = E(e™”), the characteristic function of y, exists and
is a continuous function given by : ®™(w) = i"[*_e™’y" dF,.

COROLLARY : If m, < 0, then ®'(0) = im,, and ®"(0) = —m,.
THEOREM 1 (Central Limit Theorem): Let {Y;} be a sequence of identically dis-

tributed independent random variables with mean 0 and variance 1. Let S, = £7_, Y,.
Then the distribution of S,/./n tends to the unit normal distribution.

¢ For a definition and explanation of subordination, see Section 2.
7 See Feller [9] for proofs of both lemmas and a slightly modified form of Theorem 1.
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First, we may generalize this theorem to the case where the number of terms, n,
in the sum S, is itself a random variable.

THEOREM 2:® Let {N,} be a sequence of positive integral valued random
variables obeying the property plim,_, (N,/n) = 1. Let {Y;} have the same dis-
tribution as in Theorem 1, and Sy, = (ZN»,Y,. Assume {N;} and {Y;} are mutually

independent. Then SN,./\/; converges in probability to the unit normal distribution
asn — oo.

PRroOOF: It must be shown that <15N"(w/\/ﬁ), the characteristic function of
S N../\/;’ approaches e **/2, the characteristic function of a unit normal variable,
as n — 0.

®(w/\/n) = f eV gF,

— oo

By Lemma 1 and the Corollary to Lemma 2, di(w/\/ n) = 1 — (w?/2n) + o(1/n) as
n— co. Log ®(w/\/n) > —(1/2mjw* as n— oo, and log ®""(w/\/n) - (N ,/n)-
(—w?/2),n— co. Since by hypothesis (N,/n) — 1,n - oo, ®N(w/./n) —e
n — o0, and the theorem is proved.

This theorem says that if N, has small variation around n for large n, then
XM= Y,, the random sum of random variables, still approaches the normal dis-
tribution.

Now suppose that N, has appreciable variance around n even for large n.
This is the case that is relevant for the cotton futures price process. The number of
small price changes added up on each day is variable. For instance, let N, = [Zn]
where Z has mean 1 and variance I > 0, where [ ] denotes “largest integer less
than”. Following the development in Theorem 2, for large n,

Z 1
N, log di(w/\/ﬁ) ~ % —sz), n— o0,
DV(w/\/n) ~ e 22, n— .

This characteristic function may be inverted to find the limit distribution of
S N"/\/;l. This is the characteristic function for a variable with random variance Z;
as we shall see, the distribution for such a variable is not normal, and depends on
the distribution of Z.

8 The proof of a theorem similar to this was given by Robbins [18]. See also Anscombe [2], Billingsley
[4], Renyi [16 and 17], and Feller [9] for theorems on limit distributions of random sums of random
variables.
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We have just proved the following theorem:

THEOREM 3:° Let {Y} be distributed as in Theorem 1, and let

Let N, = [Zn] for large n, where Z is a random variable with mean 1, again indepen-
dent of {Y;}. Then Sy /</n has f(u) = (1//2nZ) e~**?Z as its density.

We now have the limit distribution of Sy, conditional on Z. Over a long period
of time, the price changes of cotton futures will be the marginal distribution of
Sy, found by taking the expectation of the distribution above with respect to Z.
This simple procedure yields the subordinate distributions described below.

Subordinated Stochastic Processes

Discrete stochastic processes are indexed by a discrete variable, usually time,
in a straightforward manner: X,, X,,..., X,, X,+,.... This may also be written
X(0), X(1),... X(t),...; X(s) is the value that a particular realization of the
stochastic process assumes at time s. Instead of indexing by the integers 0, 1,2,...,
the process could be indexed by a set of numbers¢,, t,, 5, . . ., where these numbers
are themselves a realization of a stochastic process (with positive increments,
sothatt, <t, < t; < ...).'° That is, if T(t) is a positive stochastic process, a new
process X(T(t)) may be formed. This process is said to be subordinated to X(t);
T(t) is called the directing process. The distribution of AX(T(t)) is said to be
subordinate to the distribution of 4 X(t).

Note that 4X(t) will assume the role of the individual effects in the evolution of
the price process, while T(t) is a clock measuring the speed of evolution. X(T(t))
is, of course, the price process itself.

The following theorem holds for very general classes of subordinated stochastic
processes with independent increments. Aside from providing a simple formula
for calculating the variance of the increments, it also shows that this variance is
finite for processes having increments with finite variance, and directed by a process
with increments of finite mean.

THEOREM 4:!! Let X(t) and T(t) be processes with stationary independent in-
crements ; that is,

2 See Robbins [18] for a different result on the limit distribution of a random sum of random
variables. 1
10 The idea of a su:bordinated process was originated by Bochner [5]. However, for a simpler exposi-
tion, see Feller [9, p. 333 ff.].
1 Robbins [18] proves this theorem in somewhat less generality.
|



140 PETER K. CLARK

1. X(t,o) — X@t)(k=1,2,...,n — 1) are mutually independent for any finite
sett, <t, <...<t,, and similarly for T(t);

2. X(s + t) — X(s) depends on t but not on s for all s, and similarly for T(t).

Let the increments of X(t) be drawn from a distribution with mean 0 and finite
variance ¢?; ie, E[X(s + 1) — X(s)] =0, all s, and E[X(s + 1) — X(5)]* = 02,
all s. Let the increments of T(t) be drawn from a positive distribution with mean o,
independent of the increments of X(t). That is, E[T(s + 1) — T(s)] = o, and
[T(s+t)— T(@)] =0, t >0. Then the subordinated stochastic process X(T(t))
has stationary independent increments with mean 0 and variance oo?.

PRrOOF: If the steps 4X(t) are independent with mean 0 and variance ¢2, then v
steps have mean 0 and variance va?. Therefore the variance of 4X(T(t)) conditional
on AT(t) is

var (AX(T®))AT(t) = v) = vo?.

The unconditional variance of 4X(T(t)) is just the expectation of the conditional
variance

EA(T(t))(Uo'z) = O(O'2 .

The expectation of the mean of the steps over the distribution of 4T (t) is clearly 0.

Note that no mention has been made of the variance of the increments of the
directing process; this says that if the directing process has a finite mean, then
AX(T(t)) will have a finite variance unless 4X(t) does not. It also indicates that
even if the parameters 62 and « are specified, a family of distributions with 0 mean
and identical variance may be obtained by allowing the variance or other
parameters of distribution of AT(¢) to change.

COROLLARY 4.1: If X(t) is normal with stationary independent increments, and
T (t) has stationary independent positive increments with finite second moment which
are independent of X, then the kurtosis, k, of the increments of X(T(t)) is an increasing
function of the variance of the increments of T(t).

ProOF: The kurtosis u,/c* for a normal distribution is 3. Therefore conditional
on AT(t) = v,

E(AX(T@)*AT(t) = v) = 3v%0*.
The unconditional expectation is

E 414(3v%6%) = 30*(a® + var (v)).
The unconditional kurtosis is then

30*(a?® + var (v)) _ 3|:oc2 + var (v)}

2 k =
&) AX(T(@) w2o* a
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where « is the mean of v, the random variable which represents the increment of
T(¢).

Note that this corollary shows that the introduction of any directing process
makes the distribution of the increments of X(T(t)) only more leptokurtic. The
corollary is directly applicable to the limit distributions found in Theorem 3,
since we know that the limit distribution of a random sum of random variables
which obey the Central Limit Theorem is asymptotically normal with random
variance, or in new terminology, subordinate to the normal distribution.

COROLLARY 4.2: If the condition that the increments of T(t) are stationary and
independent is removed, then Theorem 4 still holds, with the exception that the
increments of X(T(t)) are uncorrelated as opposed to independent.

As has been pointed out by Mandelbrot and Taylor [15], in certain cases dis-
tributions subordinate to a normal distribution have symmetric stable distribu-
tions. Feller [9] shows that if X(¢) and T(¢) have stationary mutually independent
increments, when 4X(f) has a symmetric stable distribution with 1 < a; < 2!2
and AT(t) has a stable distribution with 0 < a, < 1, then 4X(T(f)) has a stable
distribution with a = o, - a,.

Note that this result fits intuitively with Theorem 4. If «; = 2, and 4X(T(t))
therefore has a distribution subordinate to a normal distribution, the variance of
this distribution is finite if the mean of the distribution of AT(¢) is finite, but is
infinite in this case, where F; has no mean.

The Distribution of the Lognormal-Normal Increments

As a special case of the subordinate distributions in the last section, consider a
process X(t) whose independent increments 4 X(t) are normally distributed, direc-
ted by a process T'(¢), whose independent increments are lognormally distributed.
By a lognormal distribution, we mean a random variable x whose density is:

1 (logx — p*
3 X; U 03) = ——exp | —————"].
( ) f( 12 1) 27'60'%‘36 p( 20_%
It is named the lognormal distribution because u = log x is normally distributed
with mean y and variance ¢7.'® As may be easily shown, the mean of x is pu, =
e"*91/2 and the variance of x is

02 = e***oifect — 1].

Theorem 4 now tells us that if 4X(¢) is distributed normally with mean 0 and
variance o2, the increments 4X(T(t)) of the lognormal-normal process have mean

0 and variance:
2 _ 2 u+al2
Oax(ray = 02 €™ 1.
12 o is a parameter of stable distributions, 0 < « < 2. Stable distributions behave asymptotically as
S @) ~ |u|~@*"V for large u, so that for & < 1 they have no mean, and for « < 2 they have no variance.
13 Aitchison and Brown [1] have a complete discussion of the properties of the lognormal distribu-
tion.
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Corollary 4.1 says that for given (4 + ¢7/2) but increasing o2, the variance of
this distribution stays constant while its kurtosis increases as much as desired.
Presumably this distribution will fit the observed distribution of cotton price
changes much better than the normal distribution, and might do better than the
stable distributions.'#

THEOREM 5: A random process subordinated to a normal process with independen-
dent increments distributed N(0, 63) and directed by a lognormal with independent

increments (and parameters p and 63) has the following lognormal-normal increments :

o © —(logv — w)? -y
@ fuw©) = Wfo v exp 252 Xp 2002 .

ProOF: As in Theorem 4, the distribution of AX(T(¢)) is just the expectation of
the distribution of F,(0, t63), the expectation being taken over the increments of
T(t). That is:

Junn(y) = E[ (0, tad)(y)]
where ¢t is lognormally distributed. Thus

1 y 1 (logv — p)®
Junn(y) = J;, [in—wg xp ( 2vo‘§):’ [27wf 2P (_ 202 do.

Simplification yields Formula (4).

This relatively complicated formula may be approximated by numerical
integration techniques.

3. TESTS OF THE CONDITIONAL DISTRIBUTION [AX(7(¢))|A T(1)]
AND THE DISTRIBUTION OF AT(¢)

At the end of Section 1, it was mentioned that the price process, X (T(t)), evolved
at different rates on different days. An obvious measure of this speed of evolution
is trading volume. In fact, if the price changes on individual trades were uncor-
related, T'(t), the directing process, would be the cumulative trading volume up to
time ¢. The distribution of the increments of the price process 4X (T(t)) would
then have a distribution subordinate to that of the price changes on individual
trades, and directed by the distribution of trading volume.

The way to test the hypothesis that trading volume in some sense measures the
speed of evolution is clear; the relationship between trading volume and price
change variance must be examined. If trading volume is not related to the speed of
evolution, there should be no correlation between V(t) (trading volume on day 1)
and [4X(T(¢))]%. If trading volume is the directing process, the relationship should
be linear, with the proportionality coefficient representing the variance of AX (®).

'“In fact, the lognormal-normal distribution was included because it was found empirically to be

the most useful. See Clark [6] for other distributions subordinate to the normal. It is not clear theoreti-
cally why operational time should be lognormally distributed.
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The first approach was the grouping of the two samples of 1000 observations
each on cotton futures prices into twenty groups of fifty each by increasing
volume.'® The sample variance and kurtosis within each group were calculated.
These results are displayed in Table I. Trading volume and price change variance
seem to have a curvilinear relationship.

TABLE I

PRICE CHANGE VARIANCE AND KURTOSIS BY VOLUME CLASS

Sample One: January 17, 1947, to Sample Two: March 24, 1951, to
August 31, 1950 February 10, 1955
Volume Volume  Sample  Sample Volume Volume Sample  Sample
range mean variance  kurtosis range mean variance  kurtosis
Entire sample Entire sample

326-12156 271894  584.55 19.45 488-10571 273340  501.73 20.49

326-939 718.4 30.51 3.95 488-979 794.7 18.67 2.64

948-1123 1030.7 59.60 3.53 985-1187 1078.4 4293 3.57
1124-1297 1223.7 48.87 4.64 1202-1336 12714 56.56 3.03
1298-1434 1371.0 102.70 5.09 1337-1509 1432.2 59.52 2.73
1435-1556 1493.2 105.46 4.02 1510-1631 1570.0 53.44 2.65
1558-1710 1628.7 73.76 3.21 1634-1766 1699.1 87.41 2.30
1711-1873 1788.4 104.65 2.73 1768-1895 1822.5 89.84 4.04
1874-2032 1955.3 138.53 4.75 1899-2026 1963.8 105.71 3.71
2033-2225 2121.8 173.38 4.18 2029-2190 21108 136.25 3.59
2227-2408 2316.2 300.17 4.55 2191-2353 2266.1 178.86 3.57
2408-2595 2504.9 310.99 293 2355-2537 2445.7 214.31 4.82
2608-2807 2712.4 240.52 3.47 2538-2705 2615.1 223.56 2.68
2807-2995 2912.5 347.13 3.01 2709-2913 2816.6 283.70 4.82
2998-3279 3146.0 486.91 4.55 2913-3179 3043.7 263.73 2.12
3284-3539 3399.6 352.68 295 3180-3434 3294.6 295.70 3.63
3540-3800 3676.2 800.07 2.61 3436-3763 3581.1 520.92 298
38034194 4013.8 711.67 3.14 3765-4128 39354 642.46 1.99
4204-4737 44343 785.06 2.07 4160-4795 4509.6 937.33 235
4739-5512 51493  2716.77 5.14 4800-5754 52389  2067.90 8.76
5556-12156 67823  3695.87 6.35 5759-10571 71782  3659.21 4.41

More significantly, note that the kurtosis has been very much reduced when
price changes with similar volumes are considered. The variance of the sample
kurtosis from a normal population is 24/n, where n is the sample size. Thus any
sample kurtosis that lies between 1.6 and 4.4 is within 2 standard deviations of the
true value, 3, expected with a normal parent. The vast majority of sample kurtoses
lie within this range for both samples.

The average sample kurtosis is larger than 3 for both samples; but this is just
as expected. Each volume class contains a range of volumes; just as in the case of
the entire sample, this makes the sample distribution of the daily price changes
non-normal. However, since each volume class contains a much smaller range of
volumes, this phenomenon is considerably reduced. Note that the last two volume

15 See the Appendix for a description of the data used.
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classes in both samples have significantly higher kurtosis than the other classes;
this is clearly caused by the larger range of volumes included in these classes.
Grouping by volume classes has brought the kurtosis of the price change dis-
tribution to within two standard deviations of that expected from a normal
parent, while the original kurtosis of the whole sample is 100 standard deviations
away.

To investigate the curvilinear relationship between price variance and trading
volume, the regressions in Table II were used. The results indicate that either
62 = A ™ or 6% = Buv” are equally good in explaining movement of price variance.
The first faces the theoretical objection that a(0) # O but is negligibly different
from O for the size of numbers we are using. The linear specification is clearly
worse; the F statistics calculated for linear regressions with a constant term are
about 125, with a large negative intercept. The high negative intercept term for the
unconstrained regressions indicates that the linear model performs very poorly,
as does the low F statistic. Even if all trades on any given day are perfectly cor-
related, the dependence of price change variance on volume would be only 6* ~ v?;
the data reject even this high dependence as too low.

TABLE 11
DAILY PRICE CHANGE VARIANCE AS A FUNCTION OF DAILY VOLUME?

Sample 1:

(a) log (4X?) = 1977 + 0008219, -
(-149) (.00004784) F = 29520,

(b) log (4X?) = —1271 + 2.181log (),  p _
(1.01)  (.1303) F = 280.38,

(c) AX? = 31374y,

(.02428) F = 156.25

Sample 2:

(a) log (4X?) = 1.968 + 00073340, _
(.149) (.00004766) F=23683,

(b) log (AX?) = —1273 + 21503 log (v),  _
(1.05)  (1350) F = 253.69.

(c) 4X?* = 25598,
(.02611) F = 86.24.

* The numbers in parentheses are standard errors. F 4, (1,998) = F,, (1,999) = 6.66.

To see how this curvilinear dependence of price change variance on volume
might occur, consider how the futures market actually works. At any time there
are a number of traders in the market who have expectations about the price of a
given cotton contract. Some will have long positions (holding contracts), some
will have short positions (having sold contracts), and some may have no net
position at all if they are waiting for more favorable conditions. When new
information (in the form of data that the traders consider relevant) flows to the

B d
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market, both prices and traders’ price expectations will change. If the information
is uncertain (i.e., some traders shift expectations up and others down on the basis
of the information), or if only “inside” traders get the information first, then large
price changes will be coincident with high volumes. On the other hand, very
large price changes will probably be due to information that is perceived by all
traders to move the price in one direction. News of widespread insect problems
might be an example of this sort of information in the cotton futures market. In
this case, all traders would revise their expectations in the same direction, and the
price change would have relatively low volume.

Thus the relationship var (4X) = Cv?''® is seen as a combination of correlation
of price changes on individual trades, and a deficiency of volume at high price
changes, caused by traders moving their expectations in unison. Trading volume
is taken as an instrument for the true operational time, or an “imperfect clock”
measuring the speed of evolution of the price change process. The regressions in
Table II are taken as the way to adjust the “volume clock” to get the best obtain-
able estimate of operational time.

It is now natural to use these equations estimating ‘‘operational time” to
adjust price changes and find the distribution of 4X(¢). That is, if AT(t) = f(v(t)),
then 4X(T(t))/</ f(v(t)) should be distributed as 4X(t). The results of this adjust-
ment are summarized in Table III.

TABLE 111
DISTRIBUTION OF AX(t)/\/]’(v(t)) FOR f(v) = Av* AND f(v) = Bef*

Sample 1 Sample 2
f(U) e>12'711)24818 e—12A7302.1503
K-S test against normality 0321 (.26) 0195 (.84)
Kurtosis 4.55 4.56
f(v) el.977 e.00082190 el~968 eA0007334u
K-S test against normality .0294 (.35) .0239 (.62)
Kurtosis 4.26 4.18

2 The numbers in parentheses indicate the probability that the preceding value of the K-S
statistic will be exceeded when the null hypothesis is true.

The distribution of the Kolmogorov-Smirnov statistic under a complex null
hypothesis is not known exactly, but the significance level is reduced in the normal
case. Although these K-S statistics are very encouraging, the sample kurtosis is
still too high. This is attributable to one of two causes. Either AT(t) = f(v(¢))
and the estimation procedure in Section 2 has not found the true f(v), or
AT(t) = f(v(t))- u(t) where u(t) # 1. In either case the transformation 4X(t)//f (v(t))
leaves a small deterministic or random element of operational time still in the
adjusted series. Since the results in Section 2 tell us that introduction of operational
time will always lead to increased kurtosis, either type of error should lead to
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results like those in Table III.1° The relative strength of these numbers is seen when
the figures in Table III are compared with those in Table I for the entire sample.
The K-S test statistics against normality are .114 for Sample 1 and .121 for Sample
2, both of which have probability of less than .000001 of occurrence if the sample
is drawn from the normal parent. Similarly, the kurtosis has been reduced a very
significant amount.

Although the results are far from perfect, they are good enough to conclude that
the “imperfect clock” hypothesis is a good approximation to the truth at this
level of analysis.

There is, then, a strong case for normality of price change when it is adjusted
for operational time. To find the distribution of price change, however, the dis-
tribution of AT(t) must be found. Both the gamma and lognormal distributions
were fit to the two specifications of AT(t) = (f(v(?)) for operational time. Only the
lognormal results are reported in Table IV, since the lognormal fit very much
better than the gamma.

TABLE 1V

TesTS OF LOGNORMALITY OF A47(¢) = f(v(2)) FOR f(v) = Av*
AND f(v) = Bef®

Sample 1 Sample 2

f(l)) e—12.7lv2.1818 e~ 12.73 U2.1503
K-S statistic against

lognormality .03343 (.21)* 01562 (.97)
Kurtosis of log (f(v)) 2.929 2.858
f(v) £1:977 400082190 £1+968 0007334y
K-S statistic against

lognormality .08303 (.00001) .1114 (.00000)
Kurtosis of log (f(v)) 6.744 6.115

* Again, as in Table III, the numbers in parentheses are the probability of exceeding the given
K-S statistic if the null hypothesis were true.

The easiest way to test for lognormality is to take logarithms of the sample
and test for normality; since this is the method used, the kurtosis of the sample
after logarithms have been taken is also displayed in Table IV. Note that testing
the lognormality of f(v) = Av* is equivalent to testing the lognormality of v,
while testing the lognormality of f(v) = BeP is equivalent to testing the normality
of v. The results in Table IV indicate that v is lognormally distributed as opposed

16 Although the introduction of operational time always increases kurtosis, it is easy to think of a
statistical adjustment procedure that could make k < 3. By making overestimates of variance (or f(v)) on
very high price changes, but not having them too low on small price changes, it is possible to cut off
the tails entirely in the adjusted distribution. Any regression method of estimation will usually have
both positive and negative errors on the low and high ends of the volume range. In fact, f(v) in Table IT
tends to underestimate on the high end.
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to normally distributed ; the model f(v) = Av* is the better one to use, given both
models seem to work equally well as operational time.

All of the results above are very strong evidence in favor of the finite-variance
subordination model. They also point out that the marginal distribution (un-
conditional on operational time) of price changes should be lognormal-normal
rather than stable. If 4X(z) is normal, then 4 T(t) must have a stable distribution
with a very long tail (no finite mean) in order that 4X(T(t)) have a stable distribu-
tion. If this were the case, the lognormal fit in Table IV should be much worse.

4. A DIRECT TEST OF THE TWO COMPETING HYPOTHESES

Two approaches were used to test the lognormal-normal (LN) family against
the stable (S) family of distributions as the parent of the observed distribution of
price changes for cotton futures.

The first test was a Bayesian one, with discrete prior and posterior distributions
over the two hypotheses. The construction of this test, although not completely
rigorous, was well-motivated by practical considerations. Suppose a decision-
maker is trying to decide whether cotton futures price changes have a stable or
lognormal-normal distribution, and his initial position before examination of the
data is complete ignorance. Then his prior distribution should have P(S) = P(LN)
= .5, and presumably after the sample information has been examined, these
probabilities will change.

Calculation of posterior probabilities could proceed in straightforward fashion
if $ and LN were not complicated, with an infinite number of parameter values
available within each hypothesis. In view of the fact that analytical calculation of
likelihoods as functions of parameter values was considered impossible by the
author, a second-best approach was used. Twenty-five simple hypotheses (that
is, exactly-specified sets of parameters) within each set of § and LN were chosen,
using all the prior information possible about the region in which these parameter
points should lie. Such a strategy assumes that the likelihood functions are smooth
and do not have high peaks between the selected points in parameter space. It
also makes use of the present decision-maker’s relative indifference about the
exact parameter values.

Once this method is adopted, prior probabilities {P#}?°, may be assigned in
such a way that P{! are the same for all i, and that ZgP{ = X, P4 = .5. Posterior
probabilities {P7}7?, for these hypotheses may be calculated using Bayes’ rule:

5 _ PALS,H)
" T LS, H)PE

where L(S,|H)) is the likelihood of the sample given hypothesis i. Posterior
probabilities for S and LN are ZgP? and X, P2 respectively. Each simple hypoth-
esis was given a prior probability of 0.02. The parameters which constituted each
simple hypothesis were made up by using theoretical considerations to guess what
combinations of parameters would maximize the likelihood of the sample.
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Lognormal-N ormal Distributions

Let AT(t) = T(t) — T(t — 1) be distributed lognormally with parameters
u, o2. That is, log (4T(¢)) is distributed normally with mean p and variance o2.

Let AX(t) = X(t) — X(¢t — 1) be distributed normally with mean 0 and variance
o%. F; has mean e**°¥/2 and variance e?**i(e°t — 1). Theorem 4 then says that
the variance of the distribution of AX(T(t)) = X(T(t)) — X(T(t — 1))is g% - e** 412,

Since the data are normalized so that the sample variance is 1, one constraint
on the parameters for the prior distribution of the lognormal-normal is:

o2 ettotl2 = 1,
Corollary 4.1 states that the kurtosis of the lognormal-normal family is

2u+o} 2u+o}(,0% _
i = 3[e + e (e 1):| 3.t

e2u+af

Thus another constraint on the parameters in the prior distributionis 62 = log (k/3)
where k is the sample kurtosis.

Stable Distributions

The characteristic function for this family is e~ which converges to e~ ***/?

as a — 2, when the normal distribution is obtained. If « < 2, then y must be smaller
than 0.5 to fit a sample with a sample variance of 1,s0 1 <a <2and0 <y < .5
is the correct region for the prior. Since these restrictions represent far less in-
formation than the restrictions on the lognormal-normal, some preliminary
calculations of the likelihood were made to narrow down the region for the prior
which would present the stable distributions in the most favorable light.

The concepts involved in constructing this test are elementary; the difficult
problems are the practical ones. In order to calculate the likelihood of a sample,
the density of the distribution of the sample under the null hypothesis must be
known. For the case at hand, these densities are:

6 Stable:  fibxion) = 1/ [ cos(wx)en " du,
0
and
(6) Lognormal-normal:
1 © (logv — pw?  x?
funlx; 0%, 03) = W L v 3 exp | — 207 - 2002 dv.

Expression (5) is a consequence of the fact that the characteristic function of a
distribution is its Fourier transform, while expression (6) is the lognormal-normal
density derived in Section 2. Since neither of the integrals on the right hand side of
these equations may be solved analytically, the problem of finding an approximate
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likelihood function for any sample reduces to finding values of f5 or f;y for many
different values of x, and then interpolating to find the likelihoods for sample
values of x.

The density for the stable distributions (5) is by far the easier to approximate
accurately; the integral on the right is the Fourier transform of e~?!** and the
fast Fourier transform methods that have been recently developed!” are extremely
accurate. For the test at hand, the value of fg(x) was tabulated for x € [0, 10] at
2048 equal intervals. This range was adequate, for no observations were recorded
at more than 10 sample standard deviations from 0.

Calculation of f;y(x) was less accurate and more costly. First the interval over
which the integrand in (6) was greater than 10~ !° was found. The required in-
tegral was then calculated by using Simpson’s rule with 601 points after dividing
the interval up so that the interpolation points would be closer together when the
integrand was changing rapidly. This process was repeated for x € [0, 10] at 101
points. Both distributions required small adjustments so that their numerical
integral on [ — 10, 10] equalled 1.

Tables V and VI give posterior probabilities and likelihoods for the samples,
given the parameters in the distributions. Again, all prior probabilities are 0.02.

The posterior probability of S and LN for the two samples are: Sample 1—
P(S) = .11 x 107%, P(LN) = .999999; and Sample 2—P(S) = .0007, P(LN)
= .9993. These results are very convincing evidence that the observed leptokur-
ticity in the price change distribution for cotton futures is caused by the fact that
the data are recorded in “‘clock” time rather than operational time.

Note that the results are independent of the choice of prior distribution as long
as at least one of the prior points in the LN hypothesis is in the region of high
likelihood. This is only another way of saying that the likelihood of a lognormal-
normal having generated the sample is very significantly higher than the likelihood
for any stable distributions.

One way to see why this is true is to look at the maximum likelihood distributions
in each family, as displayed in Table VII. The primary difference is that the log-
normal-normal distribution is larger at 0 and smaller in the tails; if there were
very many observations 8 or 9 sample standard deviations from the mean, then
the stable distribution would have fared much better on the tests. Instead, the
sample is characterized by a few large observations that would be unlikely if the
underlying distribution were normal, but not large enough to make the stable
family a likely contender.

The evidence for the lognormal-normal is made stronger by the fact that the
parameters derived from the theory for the prior distribution turn out to be the
ones which maximize the likelihoods of both samples. Values which did not
fit the restrictions gave much lower likelihoods for the samples.

On the other hand, the parameters of the stable distribution in the region of
maximum likelihood were quite different from what was expected. Instead of
o = 1.8 (or close to 2), « is much lower for both samples. This is a standard in-

17J. W. Cooley and J. W. Tukey [7]. In fact, these rg:thods are accurate and fast enough to calculate
4 or 5 place tables of the stable distributions at relativeiy simall expense, if anyone so desired.
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TABLE VII

STABLE AND LOGNORMAL-NORMAL DISTRIBUTIONS WHICH MAXIMIZE THE LIKELIHOOD
OF THE SAMPLES

X Sinn(x) fsx) Sunn(®) Js(x)
1y @) 3) @
Sample 1 Sample 2
0 7755 .6856 7717 7159
1 71356 6711 .7399 6999
2 .6394 .6304 6566 .6549
3 .5302 .5696 .5495 .5882
4 4340 4972 4449 .5092
.5 3557 4216 .3569 4275
.6 .2925 .3494 .2880 .3503
7 2414 .2849 .2349 2822
.8 .2000 .2300 .1935 2249
9 1665 .1849 .1606 .1786
1.0 1393 .1487 1342 .1420
1.2 .0989 .0882 .0951 .0822
1.4 0716 .0605 .0688 0556
1.6 0526 .0431 .0507 0392
1.8 0393 0318 .0380 .0287
20 0298 0277 0289 0217
2.5 0156 0129 0153 0114
30 .870 x 1072 891 x 1072 869 x 1072 720 x 1072
3.5 .509 x 1072 .538 x 1072 517 x 1072 471 x 1072
4.0 310 x 1072 .388 x 1072 .320 x 1072 339 x 1072
4.5 196 x 1072 284 x 1072 206 x 1072 247 x 1072
5.0 127 x 10772 221 x 1072 136 x 1072 191 x 1072
6.0 575 x 1073 .140 x 1072 637 x 1073 126 x 1072
7.0 282 x 1073 954 x 1073 323 x 1073 .820 x 1073
8.0 .148 x 1073 687 x 1073 175 x 1073 .589 x 1073
9.0 .815 x 1074 515 x 1073 998 x 1074 440 x 1073
10.0 466 x 107 399 x 1073 .598 x 1074 340 x 1073

sMHpu=2302=1803=3;Qa=147y=.3;03)p=—491% =200} = .6; (4) « = 1.425,y = .275.

dication of specification error; the model is a bad approximation to the data, so
the estimated parameters turn out to be different from those theoretical con-
siderations indicate. . '

Estimates of & = 1.4 also cast doubt on the graphs of cumulative variance used
by Mandelbrot [14]. With an « this low, the sample variance as a function of sample
size should have a pronounced upward slope. The relative flatness of these graphs
indicates that the underlying population has high probabilities of large changes,
but still a finite variance. The lognormal-normal distribution and other subordinate
distributions are very suitable for representing this type of behavior.

As a second test of the two hypotheses, the Kolmogorov-Smirnov statistics
testing each sample against the maximum likelihood distributions in Table VII
were calculated. The results are tabulated in Table VIIL

Note that the probabilities in parentheses are calculated using asymptotic
results, but only a small number of steps is used for the numerical LN N distribution,
so some ‘‘small sample” bias is involved.
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TABLE VIII

K-S STATISTICS TESTING THE SAMPLES AGAINST THE MAXIMUM LIKELIHOOD LOGNORMAL-
NORMAL AND STABLE DISTRIBUTIONS

Sample 1 Sample 2

LNN Stable LNN Stable
.0856 (.80)* .0374 (.44) 0955 (.68) 0438 (.25)

* Numbers in parenthesis are the probability that the given value of the K-S statistic will be exceeded if the
null hypothesis is true.

Note also that the K-S statistic is better at examining a distribution in the range
of high density than in the tails; 20 out of 1000 observations at 20 standard devia-
tions from the mean would change the likelihood results radically, but would
have only a small effect on the K-S results.

It is clear also that a bias in favor of the LNN hypothesis exists because of the
statutory limits on price movements. However, examination of the data for 10
individual futures over the span 30-250 days until maturity'® revealed this bias
to be extremely small. For all of these 10 futures, the limit (2 cents) was reached
on only 3 occasions. Furthermore, the limit was an average of 8 sample standard
deviations from 0, thus making it a very weak constraint. It seems clear that the
absence of this limitation would not have changed the above results.

In summary, then, the empirical evidence points to acceptance of the finite-
variance subordination model. The standard Central Limit Theorem holds only
when the number of random variables being added is constant (in probability
limit, at least); in the case of speculative markets, this restriction is violated, and
the limit distribution of price changes is subordinate to the normal distribution.

Upniversity of Minnesota
Manuscript received October, 1970 ; revision received April, 1971.

APPENDIX
CONSTRUCTION OF A LONG TIME SERIES FOR COTTON FUTURES

The data on price, transactions, and volume for cotton futures is readily available in daily form for
the years 1945-1958 in Trade in Cotton Futures [19). Considering the care with which the data were
gathered, these daily figures potentially give very long and accurate time series. Except for a brief
period during the Korean War when trading was suspended!® due to price controls, these series were
recorded daily, and they represent two periods of 1000 observations each.?° Such a wealth of data
potentially provides ideal circumstances for testing hypotheses about the structure of price movements
on speculative markets.

'8 This period was chosen so that the market would not be excessively thin.

19 January 26, 1951 to March 23, 1951.

20 “Sample 1” in the text is from January 17, 1947 to August 31, 1950, while “Sample 2” is from
March 24, 1951 to February 10, 1955.
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As even the most casual observer of commodity markets knows, however, no contract (or future) has
a lifetime that is this long. Contracts are made for delivery of cotton on a particular date (almost always
on the fifteenth of March, May, July, October, or December). Trading in any particular contract begins
about a year and a half before the delivery date on the contract, and ends on that date. Taken by itself,
then, any one contract will yield a time series of only 300 points, many of which are taken when the
market is thin and there is very little trading in that particular future (i.e., at the beginning and end of its
life).

To remedy this situation, and generate longer time series that always represented prices and volumes
on an active market, a continuous time series of prices and volume was constructed. The intent was to
define a “‘contract” that matured a fixed distance in the future, analogous to “90 day futures” that
exist in some foreign exchange markets. This fixed distance in the future was taken to be the average
time to maturity of all futures in the market. Care was taken to make sure this was the same for all
days, thereby avoiding the problem of changing the interest accruing to the seller of the contract.

The most straightforward way of defining this average future is to construct a weight function
W(z), where t is the time distance from now that each of the existing contracts mature. Since a few con-
tracts usually come into existence a year and a half before the maturity date, this function was con-
structed for t = 1,2,... 510. Although the time pattern of futures contracts in existence clearly changes
over time, the weight function applied to all dates should be the same, so that the ‘‘time to maturity”
of the weighted average constructed remains relatively fixed in time. The “price” of this constructed
cotton future is

2 W(r)P;
! 2 W(z)

where T = {set of all existing t} and P is the price at time ¢ of the contract maturing at time ¢ + t.
Typically, this sum includes eight terms.

To estimate W(z), the average time pattern of contracts in existence, the proportion of all contracts
was tabulated for all z € (0, 510) days in the years 1946 to 1951. This consisted of about 25 proportions
for each. These proportions were then averaged, giving the average proportion of open interest for each
time distance in the future, for integral numbers of days.

FIGURE A1—W(z) as a function of 1.



SUBORDINATED STOCHASTIC PROCESS MODEL 155

This procedure yields a rough approximation to the W(r) function desired, except that the finite
amount of data makes it possible for W(z) to have many more than one local maximum. Since examina-
tion of the data reveals that open interest has only one local maximum on any one day, it is reasonable
to require W(z) to have this property also. Essentially, what is required is some sort of smoothing opera-
tion to remove the small irregularities in W(t); a very simple and effective method to accomplish this
smoothing is a moving average. In this case, an eleven-period centered moving average sufficed to give
W(z) the required shape: first rising to a maximum, then monotonically falling, eventually to zero.
Figure Al displays W(z) graphically.

Note that “Sample 2” starts when there was still a price ceiling imposed on the May, 1951 and July,
1951 contracts. Ideally, the sample period should be moved to a later starting point, but the bias in-
volved in starting on March 24 is undoubtedly small. Price changes are constrained to 0 only for the
May contract, with the July contract displaying some variability. The price changes used in the analysis
are weighted average, which always includes unconstrained contracts; less than thirty per cent of the
volume is traded in May and July, 1951 futures. Thus about one per cent of the sample is affected by the
price controls. The similarity of results for both samples indicates that the bias toward too many small
price changes is negligible.

Also, weekends might be a source of error; intermittently throughout both sample periods the
markets were open on Saturdays. The spectra for trading volume and price change indicate that the
six-day cycle that might be introduced by Saturday trading is nonexistent. Similarly, no five-day
cycle is formed by treating weekends the same as overnight periods.
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